Metamath Proof Explorer


Theorem ofscom

Description: The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion ofscom ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ ↔ ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ↔ ( 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) )
2 1 a1i ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ↔ ( 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ) )
3 simp11 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
4 simp12 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
5 simp13 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
6 simp23 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
7 simp31 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
8 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ↔ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
9 3 4 5 6 7 8 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ↔ ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
10 simp21 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
11 simp32 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) )
12 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ↔ ⟨ 𝐹 , 𝐺 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
13 3 5 10 7 11 12 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ↔ ⟨ 𝐹 , 𝐺 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
14 9 13 anbi12d ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ↔ ( ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐹 , 𝐺 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
15 simp22 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
16 simp33 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) )
17 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ↔ ⟨ 𝐸 , 𝐻 ⟩ Cgr ⟨ 𝐴 , 𝐷 ⟩ ) )
18 3 4 15 6 16 17 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ↔ ⟨ 𝐸 , 𝐻 ⟩ Cgr ⟨ 𝐴 , 𝐷 ⟩ ) )
19 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ↔ ⟨ 𝐹 , 𝐻 ⟩ Cgr ⟨ 𝐵 , 𝐷 ⟩ ) )
20 3 5 15 7 16 19 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ↔ ⟨ 𝐹 , 𝐻 ⟩ Cgr ⟨ 𝐵 , 𝐷 ⟩ ) )
21 18 20 anbi12d ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ↔ ( ⟨ 𝐸 , 𝐻 ⟩ Cgr ⟨ 𝐴 , 𝐷 ⟩ ∧ ⟨ 𝐹 , 𝐻 ⟩ Cgr ⟨ 𝐵 , 𝐷 ⟩ ) ) )
22 2 14 21 3anbi123d ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ) ↔ ( ( 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐹 , 𝐺 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐸 , 𝐻 ⟩ Cgr ⟨ 𝐴 , 𝐷 ⟩ ∧ ⟨ 𝐹 , 𝐻 ⟩ Cgr ⟨ 𝐵 , 𝐷 ⟩ ) ) ) )
23 brofs ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ) ) )
24 brofs ( ( ( 𝑁 ∈ ℕ ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ↔ ( ( 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐹 , 𝐺 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐸 , 𝐻 ⟩ Cgr ⟨ 𝐴 , 𝐷 ⟩ ∧ ⟨ 𝐹 , 𝐻 ⟩ Cgr ⟨ 𝐵 , 𝐷 ⟩ ) ) ) )
25 3 6 7 11 16 4 5 10 15 24 syl333anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ↔ ( ( 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐸 , 𝐹 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐹 , 𝐺 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐸 , 𝐻 ⟩ Cgr ⟨ 𝐴 , 𝐷 ⟩ ∧ ⟨ 𝐹 , 𝐻 ⟩ Cgr ⟨ 𝐵 , 𝐷 ⟩ ) ) ) )
26 22 23 25 3bitr4d ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ ↔ ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ) )