Metamath Proof Explorer
Description: A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anc.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl3anc.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
syl3anc.3 |
⊢ ( 𝜑 → 𝜃 ) |
|
|
syl3Xanc.4 |
⊢ ( 𝜑 → 𝜏 ) |
|
|
syl23anc.5 |
⊢ ( 𝜑 → 𝜂 ) |
|
|
syl33anc.6 |
⊢ ( 𝜑 → 𝜁 ) |
|
|
syl133anc.7 |
⊢ ( 𝜑 → 𝜎 ) |
|
|
syl233anc.8 |
⊢ ( 𝜑 → 𝜌 ) |
|
|
syl333anc.9 |
⊢ ( 𝜑 → 𝜇 ) |
|
|
syl333anc.10 |
⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ∧ 𝜁 ) ∧ ( 𝜎 ∧ 𝜌 ∧ 𝜇 ) ) → 𝜆 ) |
|
Assertion |
syl333anc |
⊢ ( 𝜑 → 𝜆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3anc.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl3anc.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
syl3anc.3 |
⊢ ( 𝜑 → 𝜃 ) |
4 |
|
syl3Xanc.4 |
⊢ ( 𝜑 → 𝜏 ) |
5 |
|
syl23anc.5 |
⊢ ( 𝜑 → 𝜂 ) |
6 |
|
syl33anc.6 |
⊢ ( 𝜑 → 𝜁 ) |
7 |
|
syl133anc.7 |
⊢ ( 𝜑 → 𝜎 ) |
8 |
|
syl233anc.8 |
⊢ ( 𝜑 → 𝜌 ) |
9 |
|
syl333anc.9 |
⊢ ( 𝜑 → 𝜇 ) |
10 |
|
syl333anc.10 |
⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ ( 𝜏 ∧ 𝜂 ∧ 𝜁 ) ∧ ( 𝜎 ∧ 𝜌 ∧ 𝜇 ) ) → 𝜆 ) |
11 |
7 8 9
|
3jca |
⊢ ( 𝜑 → ( 𝜎 ∧ 𝜌 ∧ 𝜇 ) ) |
12 |
1 2 3 4 5 6 11 10
|
syl331anc |
⊢ ( 𝜑 → 𝜆 ) |