Metamath Proof Explorer


Theorem syl333anc

Description: A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 ( 𝜑𝜓 )
syl3anc.2 ( 𝜑𝜒 )
syl3anc.3 ( 𝜑𝜃 )
syl3Xanc.4 ( 𝜑𝜏 )
syl23anc.5 ( 𝜑𝜂 )
syl33anc.6 ( 𝜑𝜁 )
syl133anc.7 ( 𝜑𝜎 )
syl233anc.8 ( 𝜑𝜌 )
syl333anc.9 ( 𝜑𝜇 )
syl333anc.10 ( ( ( 𝜓𝜒𝜃 ) ∧ ( 𝜏𝜂𝜁 ) ∧ ( 𝜎𝜌𝜇 ) ) → 𝜆 )
Assertion syl333anc ( 𝜑𝜆 )

Proof

Step Hyp Ref Expression
1 syl3anc.1 ( 𝜑𝜓 )
2 syl3anc.2 ( 𝜑𝜒 )
3 syl3anc.3 ( 𝜑𝜃 )
4 syl3Xanc.4 ( 𝜑𝜏 )
5 syl23anc.5 ( 𝜑𝜂 )
6 syl33anc.6 ( 𝜑𝜁 )
7 syl133anc.7 ( 𝜑𝜎 )
8 syl233anc.8 ( 𝜑𝜌 )
9 syl333anc.9 ( 𝜑𝜇 )
10 syl333anc.10 ( ( ( 𝜓𝜒𝜃 ) ∧ ( 𝜏𝜂𝜁 ) ∧ ( 𝜎𝜌𝜇 ) ) → 𝜆 )
11 7 8 9 3jca ( 𝜑 → ( 𝜎𝜌𝜇 ) )
12 1 2 3 4 5 6 11 10 syl331anc ( 𝜑𝜆 )