Description: A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3anc.1 | |- ( ph -> ps ) |
|
syl3anc.2 | |- ( ph -> ch ) |
||
syl3anc.3 | |- ( ph -> th ) |
||
syl3Xanc.4 | |- ( ph -> ta ) |
||
syl23anc.5 | |- ( ph -> et ) |
||
syl33anc.6 | |- ( ph -> ze ) |
||
syl133anc.7 | |- ( ph -> si ) |
||
syl233anc.8 | |- ( ph -> rh ) |
||
syl333anc.9 | |- ( ph -> mu ) |
||
syl333anc.10 | |- ( ( ( ps /\ ch /\ th ) /\ ( ta /\ et /\ ze ) /\ ( si /\ rh /\ mu ) ) -> la ) |
||
Assertion | syl333anc | |- ( ph -> la ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | |- ( ph -> ps ) |
|
2 | syl3anc.2 | |- ( ph -> ch ) |
|
3 | syl3anc.3 | |- ( ph -> th ) |
|
4 | syl3Xanc.4 | |- ( ph -> ta ) |
|
5 | syl23anc.5 | |- ( ph -> et ) |
|
6 | syl33anc.6 | |- ( ph -> ze ) |
|
7 | syl133anc.7 | |- ( ph -> si ) |
|
8 | syl233anc.8 | |- ( ph -> rh ) |
|
9 | syl333anc.9 | |- ( ph -> mu ) |
|
10 | syl333anc.10 | |- ( ( ( ps /\ ch /\ th ) /\ ( ta /\ et /\ ze ) /\ ( si /\ rh /\ mu ) ) -> la ) |
|
11 | 7 8 9 | 3jca | |- ( ph -> ( si /\ rh /\ mu ) ) |
12 | 1 2 3 4 5 6 11 10 | syl331anc | |- ( ph -> la ) |