Metamath Proof Explorer


Theorem ofscom

Description: The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion ofscom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H E F G H OuterFiveSeg A B C D

Proof

Step Hyp Ref Expression
1 ancom B Btwn A C F Btwn E G F Btwn E G B Btwn A C
2 1 a1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G F Btwn E G B Btwn A C
3 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N N
4 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N
5 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B 𝔼 N
6 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E 𝔼 N
7 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N F 𝔼 N
8 cgrcom N A 𝔼 N B 𝔼 N E 𝔼 N F 𝔼 N A B Cgr E F E F Cgr A B
9 3 4 5 6 7 8 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F E F Cgr A B
10 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C 𝔼 N
11 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N G 𝔼 N
12 cgrcom N B 𝔼 N C 𝔼 N F 𝔼 N G 𝔼 N B C Cgr F G F G Cgr B C
13 3 5 10 7 11 12 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B C Cgr F G F G Cgr B C
14 9 13 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F B C Cgr F G E F Cgr A B F G Cgr B C
15 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N D 𝔼 N
16 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N H 𝔼 N
17 cgrcom N A 𝔼 N D 𝔼 N E 𝔼 N H 𝔼 N A D Cgr E H E H Cgr A D
18 3 4 15 6 16 17 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A D Cgr E H E H Cgr A D
19 cgrcom N B 𝔼 N D 𝔼 N F 𝔼 N H 𝔼 N B D Cgr F H F H Cgr B D
20 3 5 15 7 16 19 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B D Cgr F H F H Cgr B D
21 18 20 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A D Cgr E H B D Cgr F H E H Cgr A D F H Cgr B D
22 2 14 21 3anbi123d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H F Btwn E G B Btwn A C E F Cgr A B F G Cgr B C E H Cgr A D F H Cgr B D
23 brofs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
24 brofs N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E F G H OuterFiveSeg A B C D F Btwn E G B Btwn A C E F Cgr A B F G Cgr B C E H Cgr A D F H Cgr B D
25 3 6 7 11 16 4 5 10 15 24 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E F G H OuterFiveSeg A B C D F Btwn E G B Btwn A C E F Cgr A B F G Cgr B C E H Cgr A D F H Cgr B D
26 22 23 25 3bitr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H E F G H OuterFiveSeg A B C D