Metamath Proof Explorer


Theorem cgrextend

Description: Link congruence over a pair of line segments. Theorem 2.11 of Schwabhauser p. 29. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrextend N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F

Proof

Step Hyp Ref Expression
1 opeq1 A = B A B = B B
2 1 breq1d A = B A B Cgr D E B B Cgr D E
3 2 adantr A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr D E B B Cgr D E
4 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N N
5 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B 𝔼 N
6 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N
7 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N E 𝔼 N
8 cgrid2 N B 𝔼 N D 𝔼 N E 𝔼 N B B Cgr D E D = E
9 4 5 6 7 8 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B B Cgr D E D = E
10 9 adantl A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B B Cgr D E D = E
11 3 10 sylbid A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr D E D = E
12 opeq1 A = B A C = B C
13 opeq1 D = E D F = E F
14 12 13 breqan12d A = B D = E A C Cgr D F B C Cgr E F
15 14 exbiri A = B D = E B C Cgr E F A C Cgr D F
16 15 adantr A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D = E B C Cgr E F A C Cgr D F
17 11 16 syld A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr D E B C Cgr E F A C Cgr D F
18 17 impd A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr D E B C Cgr E F A C Cgr D F
19 18 adantld A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F
20 19 ex A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F
21 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F N
22 simpl21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A 𝔼 N
23 simpl22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F B 𝔼 N
24 21 22 23 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F N A 𝔼 N B 𝔼 N
25 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F C 𝔼 N
26 simpl31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F D 𝔼 N
27 25 22 26 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F C 𝔼 N A 𝔼 N D 𝔼 N
28 simpl32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F E 𝔼 N
29 simpl33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F F 𝔼 N
30 28 29 26 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F E 𝔼 N F 𝔼 N D 𝔼 N
31 24 27 30 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N
32 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F B Btwn A C E Btwn D F
33 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B Cgr D E B C Cgr E F
34 cgrtriv N A 𝔼 N D 𝔼 N A A Cgr D D
35 21 22 26 34 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A A Cgr D D
36 33 simpld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B Cgr D E
37 cgrcomlr N A 𝔼 N B 𝔼 N D 𝔼 N E 𝔼 N A B Cgr D E B A Cgr E D
38 21 22 23 26 28 37 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B Cgr D E B A Cgr E D
39 36 38 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F B A Cgr E D
40 35 39 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A A Cgr D D B A Cgr E D
41 brofs N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N A B C A OuterFiveSeg D E F D B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A A Cgr D D B A Cgr E D
42 21 22 23 25 22 26 28 29 26 41 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B C A OuterFiveSeg D E F D B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A A Cgr D D B A Cgr E D
43 32 33 40 42 mpbir3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B C A OuterFiveSeg D E F D
44 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B
45 43 44 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A B C A OuterFiveSeg D E F D A B
46 5segofs N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N A B C A OuterFiveSeg D E F D A B C A Cgr F D
47 31 45 46 sylc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F C A Cgr F D
48 cgrcomlr N C 𝔼 N A 𝔼 N F 𝔼 N D 𝔼 N C A Cgr F D A C Cgr D F
49 21 25 22 29 26 48 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F C A Cgr F D A C Cgr D F
50 47 49 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F
51 50 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F
52 51 com12 A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F
53 20 52 pm2.61ine N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B Btwn A C E Btwn D F A B Cgr D E B C Cgr E F A C Cgr D F