| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq1 |  |-  ( A = B -> <. A , B >. = <. B , B >. ) | 
						
							| 2 | 1 | breq1d |  |-  ( A = B -> ( <. A , B >. Cgr <. D , E >. <-> <. B , B >. Cgr <. D , E >. ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , B >. Cgr <. D , E >. ) ) | 
						
							| 4 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 5 |  | simp22 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 6 |  | simp31 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 7 |  | simp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 8 |  | cgrid2 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. D , E >. -> D = E ) ) | 
						
							| 9 | 4 5 6 7 8 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. D , E >. -> D = E ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( <. B , B >. Cgr <. D , E >. -> D = E ) ) | 
						
							| 11 | 3 10 | sylbid |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. -> D = E ) ) | 
						
							| 12 |  | opeq1 |  |-  ( A = B -> <. A , C >. = <. B , C >. ) | 
						
							| 13 |  | opeq1 |  |-  ( D = E -> <. D , F >. = <. E , F >. ) | 
						
							| 14 | 12 13 | breqan12d |  |-  ( ( A = B /\ D = E ) -> ( <. A , C >. Cgr <. D , F >. <-> <. B , C >. Cgr <. E , F >. ) ) | 
						
							| 15 | 14 | exbiri |  |-  ( A = B -> ( D = E -> ( <. B , C >. Cgr <. E , F >. -> <. A , C >. Cgr <. D , F >. ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( D = E -> ( <. B , C >. Cgr <. E , F >. -> <. A , C >. Cgr <. D , F >. ) ) ) | 
						
							| 17 | 11 16 | syld |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. -> ( <. B , C >. Cgr <. E , F >. -> <. A , C >. Cgr <. D , F >. ) ) ) | 
						
							| 18 | 17 | impd |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) -> <. A , C >. Cgr <. D , F >. ) ) | 
						
							| 19 | 18 | adantld |  |-  ( ( A = B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) | 
						
							| 20 | 19 | ex |  |-  ( A = B -> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) ) | 
						
							| 21 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> N e. NN ) | 
						
							| 22 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 23 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 24 | 21 22 23 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 25 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 26 |  | simpl31 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 27 | 25 22 26 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 28 |  | simpl32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 29 |  | simpl33 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 30 | 28 29 26 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 31 | 24 27 30 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) | 
						
							| 32 |  | simprrl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) ) | 
						
							| 33 |  | simprrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) | 
						
							| 34 |  | cgrtriv |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. A , A >. Cgr <. D , D >. ) | 
						
							| 35 | 21 22 26 34 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> <. A , A >. Cgr <. D , D >. ) | 
						
							| 36 | 33 | simpld |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> <. A , B >. Cgr <. D , E >. ) | 
						
							| 37 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 38 | 21 22 23 26 28 37 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 39 | 36 38 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> <. B , A >. Cgr <. E , D >. ) | 
						
							| 40 | 35 39 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( <. A , A >. Cgr <. D , D >. /\ <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 41 |  | brofs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. OuterFiveSeg <. <. D , E >. , <. F , D >. >. <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. B , A >. Cgr <. E , D >. ) ) ) ) | 
						
							| 42 | 21 22 23 25 22 26 28 29 26 41 | syl333anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( <. <. A , B >. , <. C , A >. >. OuterFiveSeg <. <. D , E >. , <. F , D >. >. <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. B , A >. Cgr <. E , D >. ) ) ) ) | 
						
							| 43 | 32 33 40 42 | mpbir3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> <. <. A , B >. , <. C , A >. >. OuterFiveSeg <. <. D , E >. , <. F , D >. >. ) | 
						
							| 44 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> A =/= B ) | 
						
							| 45 | 43 44 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( <. <. A , B >. , <. C , A >. >. OuterFiveSeg <. <. D , E >. , <. F , D >. >. /\ A =/= B ) ) | 
						
							| 46 |  | 5segofs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , A >. >. OuterFiveSeg <. <. D , E >. , <. F , D >. >. /\ A =/= B ) -> <. C , A >. Cgr <. F , D >. ) ) | 
						
							| 47 | 31 45 46 | sylc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> <. C , A >. Cgr <. F , D >. ) | 
						
							| 48 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , A >. Cgr <. F , D >. <-> <. A , C >. Cgr <. D , F >. ) ) | 
						
							| 49 | 21 25 22 29 26 48 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> ( <. C , A >. Cgr <. F , D >. <-> <. A , C >. Cgr <. D , F >. ) ) | 
						
							| 50 | 47 49 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( A =/= B /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) ) ) -> <. A , C >. Cgr <. D , F >. ) | 
						
							| 51 | 50 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( A =/= B -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) ) | 
						
							| 52 | 51 | com12 |  |-  ( A =/= B -> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) ) | 
						
							| 53 | 20 52 | pm2.61ine |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) |