| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgrextendand.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
cgrextendand.2 |
|- ( ph -> A e. ( EE ` N ) ) |
| 3 |
|
cgrextendand.3 |
|- ( ph -> B e. ( EE ` N ) ) |
| 4 |
|
cgrextendand.4 |
|- ( ph -> C e. ( EE ` N ) ) |
| 5 |
|
cgrextendand.5 |
|- ( ph -> D e. ( EE ` N ) ) |
| 6 |
|
cgrextendand.6 |
|- ( ph -> E e. ( EE ` N ) ) |
| 7 |
|
cgrextendand.7 |
|- ( ph -> F e. ( EE ` N ) ) |
| 8 |
|
cgrextendand.8 |
|- ( ( ph /\ ps ) -> B Btwn <. A , C >. ) |
| 9 |
|
cgrextendand.9 |
|- ( ( ph /\ ps ) -> E Btwn <. D , F >. ) |
| 10 |
|
cgrextendand.10 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. D , E >. ) |
| 11 |
|
cgrextendand.11 |
|- ( ( ph /\ ps ) -> <. B , C >. Cgr <. E , F >. ) |
| 12 |
8 9
|
jca |
|- ( ( ph /\ ps ) -> ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) ) |
| 13 |
10 11
|
jca |
|- ( ( ph /\ ps ) -> ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) |
| 14 |
|
cgrextend |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) |
| 15 |
1 2 3 4 5 6 7 14
|
syl133anc |
|- ( ph -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ps ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) ) |
| 17 |
12 13 16
|
mp2and |
|- ( ( ph /\ ps ) -> <. A , C >. Cgr <. D , F >. ) |