Metamath Proof Explorer


Theorem cgrextendand

Description: Deduction form of cgrextend . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses cgrextendand.1
|- ( ph -> N e. NN )
cgrextendand.2
|- ( ph -> A e. ( EE ` N ) )
cgrextendand.3
|- ( ph -> B e. ( EE ` N ) )
cgrextendand.4
|- ( ph -> C e. ( EE ` N ) )
cgrextendand.5
|- ( ph -> D e. ( EE ` N ) )
cgrextendand.6
|- ( ph -> E e. ( EE ` N ) )
cgrextendand.7
|- ( ph -> F e. ( EE ` N ) )
cgrextendand.8
|- ( ( ph /\ ps ) -> B Btwn <. A , C >. )
cgrextendand.9
|- ( ( ph /\ ps ) -> E Btwn <. D , F >. )
cgrextendand.10
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. D , E >. )
cgrextendand.11
|- ( ( ph /\ ps ) -> <. B , C >. Cgr <. E , F >. )
Assertion cgrextendand
|- ( ( ph /\ ps ) -> <. A , C >. Cgr <. D , F >. )

Proof

Step Hyp Ref Expression
1 cgrextendand.1
 |-  ( ph -> N e. NN )
2 cgrextendand.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrextendand.3
 |-  ( ph -> B e. ( EE ` N ) )
4 cgrextendand.4
 |-  ( ph -> C e. ( EE ` N ) )
5 cgrextendand.5
 |-  ( ph -> D e. ( EE ` N ) )
6 cgrextendand.6
 |-  ( ph -> E e. ( EE ` N ) )
7 cgrextendand.7
 |-  ( ph -> F e. ( EE ` N ) )
8 cgrextendand.8
 |-  ( ( ph /\ ps ) -> B Btwn <. A , C >. )
9 cgrextendand.9
 |-  ( ( ph /\ ps ) -> E Btwn <. D , F >. )
10 cgrextendand.10
 |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. D , E >. )
11 cgrextendand.11
 |-  ( ( ph /\ ps ) -> <. B , C >. Cgr <. E , F >. )
12 8 9 jca
 |-  ( ( ph /\ ps ) -> ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) )
13 10 11 jca
 |-  ( ( ph /\ ps ) -> ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) )
14 cgrextend
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) )
15 1 2 3 4 5 6 7 14 syl133anc
 |-  ( ph -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) )
16 15 adantr
 |-  ( ( ph /\ ps ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , C >. Cgr <. D , F >. ) )
17 12 13 16 mp2and
 |-  ( ( ph /\ ps ) -> <. A , C >. Cgr <. D , F >. )