Metamath Proof Explorer


Theorem cgrextendand

Description: Deduction form of cgrextend . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses cgrextendand.1 ( 𝜑𝑁 ∈ ℕ )
cgrextendand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrextendand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrextendand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrextendand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrextendand.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrextendand.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrextendand.8 ( ( 𝜑𝜓 ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
cgrextendand.9 ( ( 𝜑𝜓 ) → 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ )
cgrextendand.10 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ )
cgrextendand.11 ( ( 𝜑𝜓 ) → ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
Assertion cgrextendand ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrextendand.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrextendand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrextendand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 cgrextendand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 cgrextendand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
6 cgrextendand.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
7 cgrextendand.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
8 cgrextendand.8 ( ( 𝜑𝜓 ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
9 cgrextendand.9 ( ( 𝜑𝜓 ) → 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ )
10 cgrextendand.10 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ )
11 cgrextendand.11 ( ( 𝜑𝜓 ) → ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
12 8 9 jca ( ( 𝜑𝜓 ) → ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) )
13 10 11 jca ( ( 𝜑𝜓 ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) )
14 cgrextend ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ) )
15 1 2 3 4 5 6 7 14 syl133anc ( 𝜑 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ) )
16 15 adantr ( ( 𝜑𝜓 ) → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝐹 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐷 , 𝐸 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ ) )
17 12 13 16 mp2and ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐹 ⟩ )