| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> A Btwn <. Q , X >. ) |
| 2 |
1 1
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) ) |
| 3 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> N e. NN ) |
| 4 |
|
simpl31 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> Q e. ( EE ` N ) ) |
| 5 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> A e. ( EE ` N ) ) |
| 6 |
3 4 5
|
cgrrflxd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. Q , A >. Cgr <. Q , A >. ) |
| 7 |
|
simpl32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> X e. ( EE ` N ) ) |
| 8 |
3 5 7
|
cgrrflxd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. A , X >. ) |
| 9 |
6 8
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) ) |
| 10 |
|
simpl33 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> Y e. ( EE ` N ) ) |
| 11 |
4 5 10
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) |
| 12 |
4 5 7
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) |
| 13 |
3 11 12
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) ) |
| 14 |
|
simpr3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> A Btwn <. Q , Y >. ) |
| 15 |
14 1
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( A Btwn <. Q , Y >. /\ A Btwn <. Q , X >. ) ) |
| 16 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> B e. ( EE ` N ) ) |
| 17 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> C e. ( EE ` N ) ) |
| 18 |
|
simpr3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. B , C >. ) |
| 19 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , Y >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , Y >. ) ) |
| 20 |
3 5 10 16 17 19
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. A , Y >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , Y >. ) ) |
| 21 |
18 20
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. A , Y >. ) |
| 22 |
|
simpr2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. B , C >. ) |
| 23 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , X >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , X >. ) ) |
| 24 |
3 5 7 16 17 23
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. A , X >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , X >. ) ) |
| 25 |
22 24
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. A , X >. ) |
| 26 |
3 16 17 5 10 5 7 21 25
|
cgrtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. A , X >. ) |
| 27 |
15 6 26
|
jca32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( A Btwn <. Q , Y >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) |
| 28 |
|
cgrextend |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. Q , Y >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , Y >. Cgr <. A , X >. ) ) -> <. Q , Y >. Cgr <. Q , X >. ) ) |
| 29 |
13 27 28
|
sylc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. Q , Y >. Cgr <. Q , X >. ) |
| 30 |
29 26
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) |
| 31 |
2 9 30
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) |
| 32 |
31
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) ) |
| 33 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> N e. NN ) |
| 34 |
|
simp31 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) |
| 35 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 36 |
|
simp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> X e. ( EE ` N ) ) |
| 37 |
|
simp33 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Y e. ( EE ` N ) ) |
| 38 |
|
brofs |
|- ( ( ( N e. NN /\ Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. <-> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) ) |
| 39 |
33 34 35 36 37 34 35 36 36 38
|
syl333anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. <-> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) ) |
| 40 |
32 39
|
sylibrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. ) ) |
| 41 |
|
simp1 |
|- ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> Q =/= A ) |
| 42 |
41
|
a1i |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> Q =/= A ) ) |
| 43 |
40 42
|
jcad |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. /\ Q =/= A ) ) ) |
| 44 |
|
5segofs |
|- ( ( ( N e. NN /\ Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. /\ Q =/= A ) -> <. X , Y >. Cgr <. X , X >. ) ) |
| 45 |
33 34 35 36 37 34 35 36 36 44
|
syl333anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. /\ Q =/= A ) -> <. X , Y >. Cgr <. X , X >. ) ) |
| 46 |
|
axcgrid |
|- ( ( N e. NN /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( <. X , Y >. Cgr <. X , X >. -> X = Y ) ) |
| 47 |
33 36 37 36 46
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( <. X , Y >. Cgr <. X , X >. -> X = Y ) ) |
| 48 |
43 45 47
|
3syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) ) |