| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> A Btwn <. Q , X >. ) | 
						
							| 2 | 1 1 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> N e. NN ) | 
						
							| 4 |  | simpl31 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 5 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 6 | 3 4 5 | cgrrflxd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. Q , A >. Cgr <. Q , A >. ) | 
						
							| 7 |  | simpl32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> X e. ( EE ` N ) ) | 
						
							| 8 | 3 5 7 | cgrrflxd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. A , X >. ) | 
						
							| 9 | 6 8 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) ) | 
						
							| 10 |  | simpl33 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> Y e. ( EE ` N ) ) | 
						
							| 11 | 4 5 10 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) | 
						
							| 12 | 4 5 7 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) | 
						
							| 13 | 3 11 12 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) ) | 
						
							| 14 |  | simpr3l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> A Btwn <. Q , Y >. ) | 
						
							| 15 | 14 1 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( A Btwn <. Q , Y >. /\ A Btwn <. Q , X >. ) ) | 
						
							| 16 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 17 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 18 |  | simpr3r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. B , C >. ) | 
						
							| 19 |  | cgrcom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , Y >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , Y >. ) ) | 
						
							| 20 | 3 5 10 16 17 19 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. A , Y >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , Y >. ) ) | 
						
							| 21 | 18 20 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. A , Y >. ) | 
						
							| 22 |  | simpr2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , X >. Cgr <. B , C >. ) | 
						
							| 23 |  | cgrcom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , X >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , X >. ) ) | 
						
							| 24 | 3 5 7 16 17 23 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. A , X >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , X >. ) ) | 
						
							| 25 | 22 24 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. B , C >. Cgr <. A , X >. ) | 
						
							| 26 | 3 16 17 5 10 5 7 21 25 | cgrtr4d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. A , Y >. Cgr <. A , X >. ) | 
						
							| 27 | 15 6 26 | jca32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( A Btwn <. Q , Y >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) | 
						
							| 28 |  | cgrextend |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ Y e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. Q , Y >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , Y >. Cgr <. A , X >. ) ) -> <. Q , Y >. Cgr <. Q , X >. ) ) | 
						
							| 29 | 13 27 28 | sylc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> <. Q , Y >. Cgr <. Q , X >. ) | 
						
							| 30 | 29 26 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) | 
						
							| 31 | 2 9 30 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) /\ ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) ) -> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) | 
						
							| 32 | 31 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) ) | 
						
							| 33 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 34 |  | simp31 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 35 |  | simp21 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 36 |  | simp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> X e. ( EE ` N ) ) | 
						
							| 37 |  | simp33 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> Y e. ( EE ` N ) ) | 
						
							| 38 |  | brofs |  |-  ( ( ( N e. NN /\ Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. <-> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) ) | 
						
							| 39 | 33 34 35 36 37 34 35 36 36 38 | syl333anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. <-> ( ( A Btwn <. Q , X >. /\ A Btwn <. Q , X >. ) /\ ( <. Q , A >. Cgr <. Q , A >. /\ <. A , X >. Cgr <. A , X >. ) /\ ( <. Q , Y >. Cgr <. Q , X >. /\ <. A , Y >. Cgr <. A , X >. ) ) ) ) | 
						
							| 40 | 32 39 | sylibrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. ) ) | 
						
							| 41 |  | simp1 |  |-  ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> Q =/= A ) | 
						
							| 42 | 41 | a1i |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> Q =/= A ) ) | 
						
							| 43 | 40 42 | jcad |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. /\ Q =/= A ) ) ) | 
						
							| 44 |  | 5segofs |  |-  ( ( ( N e. NN /\ Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ X e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. /\ Q =/= A ) -> <. X , Y >. Cgr <. X , X >. ) ) | 
						
							| 45 | 33 34 35 36 37 34 35 36 36 44 | syl333anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( <. <. Q , A >. , <. X , Y >. >. OuterFiveSeg <. <. Q , A >. , <. X , X >. >. /\ Q =/= A ) -> <. X , Y >. Cgr <. X , X >. ) ) | 
						
							| 46 |  | axcgrid |  |-  ( ( N e. NN /\ ( X e. ( EE ` N ) /\ Y e. ( EE ` N ) /\ X e. ( EE ` N ) ) ) -> ( <. X , Y >. Cgr <. X , X >. -> X = Y ) ) | 
						
							| 47 | 33 36 37 36 46 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( <. X , Y >. Cgr <. X , X >. -> X = Y ) ) | 
						
							| 48 | 43 45 47 | 3syld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ X e. ( EE ` N ) /\ Y e. ( EE ` N ) ) ) -> ( ( Q =/= A /\ ( A Btwn <. Q , X >. /\ <. A , X >. Cgr <. B , C >. ) /\ ( A Btwn <. Q , Y >. /\ <. A , Y >. Cgr <. B , C >. ) ) -> X = Y ) ) |