| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> N e. NN ) | 
						
							| 2 |  | simpr2 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) | 
						
							| 3 |  | simpr1 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 4 |  | axsegcon |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E. r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) | 
						
							| 6 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> C =/= D ) | 
						
							| 7 |  | simprl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) | 
						
							| 8 |  | simprr |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) | 
						
							| 9 | 6 7 8 | 3jca |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) | 
						
							| 10 | 9 | ex |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) ) | 
						
							| 11 |  | simp1 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 12 |  | simp22r |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 13 |  | simp21l |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 14 |  | simp21r |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 15 |  | simp22l |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 16 |  | simp3l |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> r e. ( EE ` N ) ) | 
						
							| 17 |  | simp3r |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> s e. ( EE ` N ) ) | 
						
							| 18 |  | segconeq |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) | 
						
							| 19 | 11 12 13 14 15 16 17 18 | syl133anc |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) | 
						
							| 20 | 10 19 | syld |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) | 
						
							| 21 | 20 | 3expa |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) | 
						
							| 22 | 21 | ralrimivva |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> A. r e. ( EE ` N ) A. s e. ( EE ` N ) ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) | 
						
							| 23 |  | opeq2 |  |-  ( r = s -> <. C , r >. = <. C , s >. ) | 
						
							| 24 | 23 | breq2d |  |-  ( r = s -> ( D Btwn <. C , r >. <-> D Btwn <. C , s >. ) ) | 
						
							| 25 |  | opeq2 |  |-  ( r = s -> <. D , r >. = <. D , s >. ) | 
						
							| 26 | 25 | breq1d |  |-  ( r = s -> ( <. D , r >. Cgr <. A , B >. <-> <. D , s >. Cgr <. A , B >. ) ) | 
						
							| 27 | 24 26 | anbi12d |  |-  ( r = s -> ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) <-> ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) | 
						
							| 28 | 27 | reu4 |  |-  ( E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) <-> ( E. r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ A. r e. ( EE ` N ) A. s e. ( EE ` N ) ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) ) | 
						
							| 29 | 5 22 28 | sylanbrc |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) |