Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> N e. NN ) |
2 |
|
simpr2 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) |
3 |
|
simpr1 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
4 |
|
axsegcon |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E. r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) |
6 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> C =/= D ) |
7 |
|
simprl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) |
8 |
|
simprr |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) |
9 |
6 7 8
|
3jca |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) /\ ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) -> ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) |
10 |
9
|
ex |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) ) |
11 |
|
simp1 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> N e. NN ) |
12 |
|
simp22r |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
13 |
|
simp21l |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
14 |
|
simp21r |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
15 |
|
simp22l |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
16 |
|
simp3l |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> r e. ( EE ` N ) ) |
17 |
|
simp3r |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> s e. ( EE ` N ) ) |
18 |
|
segconeq |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) |
19 |
11 12 13 14 15 16 17 18
|
syl133anc |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( C =/= D /\ ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) |
20 |
10 19
|
syld |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) |
21 |
20
|
3expa |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) /\ ( r e. ( EE ` N ) /\ s e. ( EE ` N ) ) ) -> ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) |
22 |
21
|
ralrimivva |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> A. r e. ( EE ` N ) A. s e. ( EE ` N ) ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) |
23 |
|
opeq2 |
|- ( r = s -> <. C , r >. = <. C , s >. ) |
24 |
23
|
breq2d |
|- ( r = s -> ( D Btwn <. C , r >. <-> D Btwn <. C , s >. ) ) |
25 |
|
opeq2 |
|- ( r = s -> <. D , r >. = <. D , s >. ) |
26 |
25
|
breq1d |
|- ( r = s -> ( <. D , r >. Cgr <. A , B >. <-> <. D , s >. Cgr <. A , B >. ) ) |
27 |
24 26
|
anbi12d |
|- ( r = s -> ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) <-> ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) ) |
28 |
27
|
reu4 |
|- ( E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) <-> ( E. r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ A. r e. ( EE ` N ) A. s e. ( EE ` N ) ( ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) /\ ( D Btwn <. C , s >. /\ <. D , s >. Cgr <. A , B >. ) ) -> r = s ) ) ) |
29 |
5 22 28
|
sylanbrc |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) |