Metamath Proof Explorer


Theorem segconeu

Description: Existential uniqueness version of segconeq . (Contributed by Scott Fenton, 19-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion segconeu N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ∃! r 𝔼 N D Btwn C r D r Cgr A B

Proof

Step Hyp Ref Expression
1 simpl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D N
2 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D C 𝔼 N D 𝔼 N
3 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A 𝔼 N B 𝔼 N
4 axsegcon N C 𝔼 N D 𝔼 N A 𝔼 N B 𝔼 N r 𝔼 N D Btwn C r D r Cgr A B
5 1 2 3 4 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N D Btwn C r D r Cgr A B
6 simpl23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B C D
7 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B D Btwn C r D r Cgr A B
8 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B D Btwn C s D s Cgr A B
9 6 7 8 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B C D D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B
10 9 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B C D D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B
11 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N N
12 simp22r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D 𝔼 N
13 simp21l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N A 𝔼 N
14 simp21r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N B 𝔼 N
15 simp22l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N C 𝔼 N
16 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N r 𝔼 N
17 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N s 𝔼 N
18 segconeq N D 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N r 𝔼 N s 𝔼 N C D D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B r = s
19 11 12 13 14 15 16 17 18 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N C D D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B r = s
20 10 19 syld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B r = s
21 20 3expa N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B r = s
22 21 ralrimivva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B r = s
23 opeq2 r = s C r = C s
24 23 breq2d r = s D Btwn C r D Btwn C s
25 opeq2 r = s D r = D s
26 25 breq1d r = s D r Cgr A B D s Cgr A B
27 24 26 anbi12d r = s D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B
28 27 reu4 ∃! r 𝔼 N D Btwn C r D r Cgr A B r 𝔼 N D Btwn C r D r Cgr A B r 𝔼 N s 𝔼 N D Btwn C r D r Cgr A B D Btwn C s D s Cgr A B r = s
29 5 22 28 sylanbrc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ∃! r 𝔼 N D Btwn C r D r Cgr A B