Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Congruence properties
cgrid2
Next ⟩
cgrdegen
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgrid2
Description:
Identity law for congruence.
(Contributed by
Scott Fenton
, 12-Jun-2013)
Ref
Expression
Assertion
cgrid2
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
A
Cgr
B
C
→
B
=
C
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
N
∈
ℕ
2
simpr1
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
∈
𝔼
⁡
N
3
simpr2
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
B
∈
𝔼
⁡
N
4
simpr3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
C
∈
𝔼
⁡
N
5
cgrcom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
A
Cgr
B
C
↔
B
C
Cgr
A
A
6
1
2
2
3
4
5
syl122anc
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
A
Cgr
B
C
↔
B
C
Cgr
A
A
7
3anrot
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
↔
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
8
axcgrid
⊢
N
∈
ℕ
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
→
B
C
Cgr
A
A
→
B
=
C
9
7
8
sylan2b
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
B
C
Cgr
A
A
→
B
=
C
10
6
9
sylbid
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
A
Cgr
B
C
→
B
=
C