Metamath Proof Explorer


Theorem cgrid2

Description: Identity law for congruence. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrid2 N A 𝔼 N B 𝔼 N C 𝔼 N A A Cgr B C B = C

Proof

Step Hyp Ref Expression
1 simpl N A 𝔼 N B 𝔼 N C 𝔼 N N
2 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
3 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N
4 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
5 cgrcom N A 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A A Cgr B C B C Cgr A A
6 1 2 2 3 4 5 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N A A Cgr B C B C Cgr A A
7 3anrot A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
8 axcgrid N B 𝔼 N C 𝔼 N A 𝔼 N B C Cgr A A B = C
9 7 8 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N B C Cgr A A B = C
10 6 9 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N A A Cgr B C B = C