Metamath Proof Explorer


Theorem ofscom

Description: The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion ofscom
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. <-> <. <. E , F >. , <. G , H >. >. OuterFiveSeg <. <. A , B >. , <. C , D >. >. ) )

Proof

Step Hyp Ref Expression
1 ancom
 |-  ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) <-> ( F Btwn <. E , G >. /\ B Btwn <. A , C >. ) )
2 1 a1i
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) <-> ( F Btwn <. E , G >. /\ B Btwn <. A , C >. ) ) )
3 simp11
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> N e. NN )
4 simp12
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> A e. ( EE ` N ) )
5 simp13
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> B e. ( EE ` N ) )
6 simp23
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> E e. ( EE ` N ) )
7 simp31
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> F e. ( EE ` N ) )
8 cgrcom
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. E , F >. <-> <. E , F >. Cgr <. A , B >. ) )
9 3 4 5 6 7 8 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. E , F >. <-> <. E , F >. Cgr <. A , B >. ) )
10 simp21
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> C e. ( EE ` N ) )
11 simp32
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> G e. ( EE ` N ) )
12 cgrcom
 |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. F , G >. <-> <. F , G >. Cgr <. B , C >. ) )
13 3 5 10 7 11 12 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. F , G >. <-> <. F , G >. Cgr <. B , C >. ) )
14 9 13 anbi12d
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) <-> ( <. E , F >. Cgr <. A , B >. /\ <. F , G >. Cgr <. B , C >. ) ) )
15 simp22
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> D e. ( EE ` N ) )
16 simp33
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> H e. ( EE ` N ) )
17 cgrcom
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. A , D >. Cgr <. E , H >. <-> <. E , H >. Cgr <. A , D >. ) )
18 3 4 15 6 16 17 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. A , D >. Cgr <. E , H >. <-> <. E , H >. Cgr <. A , D >. ) )
19 cgrcom
 |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , D >. Cgr <. F , H >. <-> <. F , H >. Cgr <. B , D >. ) )
20 3 5 15 7 16 19 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , D >. Cgr <. F , H >. <-> <. F , H >. Cgr <. B , D >. ) )
21 18 20 anbi12d
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) <-> ( <. E , H >. Cgr <. A , D >. /\ <. F , H >. Cgr <. B , D >. ) ) )
22 2 14 21 3anbi123d
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> ( ( F Btwn <. E , G >. /\ B Btwn <. A , C >. ) /\ ( <. E , F >. Cgr <. A , B >. /\ <. F , G >. Cgr <. B , C >. ) /\ ( <. E , H >. Cgr <. A , D >. /\ <. F , H >. Cgr <. B , D >. ) ) ) )
23 brofs
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) )
24 brofs
 |-  ( ( ( N e. NN /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ H e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. E , F >. , <. G , H >. >. OuterFiveSeg <. <. A , B >. , <. C , D >. >. <-> ( ( F Btwn <. E , G >. /\ B Btwn <. A , C >. ) /\ ( <. E , F >. Cgr <. A , B >. /\ <. F , G >. Cgr <. B , C >. ) /\ ( <. E , H >. Cgr <. A , D >. /\ <. F , H >. Cgr <. B , D >. ) ) ) )
25 3 6 7 11 16 4 5 10 15 24 syl333anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. E , F >. , <. G , H >. >. OuterFiveSeg <. <. A , B >. , <. C , D >. >. <-> ( ( F Btwn <. E , G >. /\ B Btwn <. A , C >. ) /\ ( <. E , F >. Cgr <. A , B >. /\ <. F , G >. Cgr <. B , C >. ) /\ ( <. E , H >. Cgr <. A , D >. /\ <. F , H >. Cgr <. B , D >. ) ) ) )
26 22 23 25 3bitr4d
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. <-> <. <. E , F >. , <. G , H >. >. OuterFiveSeg <. <. A , B >. , <. C , D >. >. ) )