Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
2 |
|
simpl21 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
fveere |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
4 |
2 3
|
sylancom |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
5 |
|
simpl22 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
fveere |
⊢ ( ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
7 |
5 6
|
sylancom |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑗 ) ∈ ℝ ) |
8 |
4 7
|
resubcld |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ∈ ℝ ) |
9 |
8
|
resqcld |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℝ ) |
10 |
1 9
|
fsumrecl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
13 |
|
simpl32 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) |
14 |
|
fveere |
⊢ ( ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ℝ ) |
15 |
13 14
|
sylancom |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ℝ ) |
16 |
|
simpl33 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) |
17 |
|
fveere |
⊢ ( ( 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑗 ) ∈ ℝ ) |
18 |
16 17
|
sylancom |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑗 ) ∈ ℝ ) |
19 |
15 18
|
resubcld |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ∈ ℝ ) |
20 |
19
|
resqcld |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℝ ) |
21 |
1 20
|
fsumrecl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
24 |
|
elicc01 |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↔ ( 𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ∧ 𝑡 ≤ 1 ) ) |
25 |
24
|
simp1bi |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) → 𝑡 ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) → 𝑡 ∈ ℂ ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) → 𝑡 ∈ ℂ ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → 𝑡 ∈ ℂ ) |
29 |
28
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝑡 ∈ ℂ ) |
30 |
|
simpl11 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝑁 ∈ ℕ ) |
31 |
|
simp12 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
32 |
|
simp13 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
33 |
|
simp21 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
34 |
31 32 33
|
3jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
36 |
|
simprrl |
⊢ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
39 |
|
simp1rl |
⊢ ( ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → 𝐴 ≠ 𝐵 ) |
40 |
39
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐴 ≠ 𝐵 ) |
41 |
|
ax5seglem4 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ 𝐴 ≠ 𝐵 ) → 𝑡 ≠ 0 ) |
42 |
30 35 38 40 41
|
syl211anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝑡 ≠ 0 ) |
43 |
|
simpr3r |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) |
44 |
|
simpl13 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
45 |
|
simpl22 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
46 |
|
simpl31 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
47 |
|
simpl33 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) |
48 |
|
brcgr |
⊢ ( ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ↔ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
49 |
44 45 46 47 48
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ↔ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
50 |
43 49
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) |
51 |
|
simp23 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
52 |
|
simp31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) |
53 |
|
simp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) |
54 |
51 52 53
|
3jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
55 |
34 54
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
57 |
|
simpr1l |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ) |
58 |
|
simprrr |
⊢ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) |
59 |
58
|
3ad2ant1 |
⊢ ( ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) |
60 |
59
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) |
61 |
38 60
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
62 |
|
simpr2l |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ) |
63 |
|
simpr2r |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) |
64 |
|
ax5seglem6 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ) → 𝑡 = 𝑠 ) |
65 |
30 56 40 57 61 62 63 64
|
syl232anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝑡 = 𝑠 ) |
66 |
65
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 1 − 𝑡 ) = ( 1 − 𝑠 ) ) |
67 |
54
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
68 |
|
ax5seglem3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) |
69 |
30 35 67 57 61 62 63 68
|
syl322anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) |
70 |
65 69
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) = ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
71 |
|
simpr3l |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ) |
72 |
|
simpl12 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
73 |
|
simpl23 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
74 |
|
brcgr |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ↔ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
75 |
72 45 73 47 74
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ↔ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
76 |
71 75
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) |
77 |
70 76
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) = ( ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
78 |
66 77
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( ( 1 − 𝑡 ) · ( ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) ) = ( ( 1 − 𝑠 ) · ( ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) |
79 |
50 78
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) + ( ( 1 − 𝑡 ) · ( ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) + ( ( 1 − 𝑠 ) · ( ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
80 |
31 32
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
81 |
|
simp22 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
82 |
80 33 81
|
jca32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
83 |
82
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
84 |
|
simp1ll |
⊢ ( ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
85 |
84
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
86 |
|
ax5seglem9 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) ∧ ( 𝑡 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) + ( ( 1 − 𝑡 ) · ( ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
87 |
30 83 85 38 86
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) + ( ( 1 − 𝑡 ) · ( ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
88 |
|
3simpc |
⊢ ( ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
89 |
88
|
3ad2ant3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
90 |
51 52 89
|
jca31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
91 |
90
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) |
92 |
|
simp1lr |
⊢ ( ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
93 |
92
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
94 |
|
ax5seglem9 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) ∧ ( 𝑠 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) + ( ( 1 − 𝑠 ) · ( ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
95 |
30 91 93 60 94
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) + ( ( 1 − 𝑠 ) · ( ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐺 ‘ 𝑗 ) ) ↑ 2 ) ) − Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐸 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
96 |
79 87 95
|
3eqtr4d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) = ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
97 |
65
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) = ( 𝑠 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
98 |
96 97
|
eqtr4d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) ) = ( 𝑡 · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
99 |
12 23 29 42 98
|
mulcanad |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) |
100 |
99
|
3exp2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) → ( ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
101 |
100
|
expd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) → ( ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) ) |
102 |
101
|
rexlimdvv |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) → ( ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) ) ) |
103 |
102
|
3impd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
104 |
|
brbtwn |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
105 |
32 31 33 104
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
106 |
|
brbtwn |
⊢ ( ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ↔ ∃ 𝑠 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
107 |
52 51 53 106
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ↔ ∃ 𝑠 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
108 |
105 107
|
anbi12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ↔ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∃ 𝑠 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
109 |
|
reeanv |
⊢ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ↔ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∃ 𝑠 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
110 |
108 109
|
bitr4di |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
111 |
110
|
anbi2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ) ↔ ( 𝐴 ≠ 𝐵 ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ) |
112 |
|
3anass |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ) ) |
113 |
|
r19.42v |
⊢ ( ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ↔ ( 𝐴 ≠ 𝐵 ∧ ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
114 |
113
|
rexbii |
⊢ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
115 |
|
r19.42v |
⊢ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ↔ ( 𝐴 ≠ 𝐵 ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
116 |
114 115
|
bitri |
⊢ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ↔ ( 𝐴 ≠ 𝐵 ∧ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
117 |
111 112 116
|
3bitr4g |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) ) |
118 |
117
|
3anbi1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ↔ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∃ 𝑠 ∈ ( 0 [,] 1 ) ( 𝐴 ≠ 𝐵 ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) ) |
119 |
|
simp33 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) |
120 |
|
brcgr |
⊢ ( ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ↔ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
121 |
33 81 53 119 120
|
syl22anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ↔ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐷 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐺 ‘ 𝑗 ) − ( 𝐻 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
122 |
103 118 121
|
3imtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) |