| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑇  =  0  →  ( 1  −  𝑇 )  =  ( 1  −  0 ) ) | 
						
							| 2 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝑇  =  0  →  ( 1  −  𝑇 )  =  1 ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝑇  =  0  →  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  =  ( 1  ·  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑇  =  0  →  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) )  =  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) | 
						
							| 6 | 4 5 | oveq12d | ⊢ ( 𝑇  =  0  →  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑇  =  0  →  ( ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ↔  ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) ) | 
						
							| 8 | 7 | ralbidv | ⊢ ( 𝑇  =  0  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) ) | 
						
							| 9 | 8 | biimpac | ⊢ ( ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ∧  𝑇  =  0 )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) | 
						
							| 10 |  | eqeefv | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝐴  =  𝐵  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝐴  =  𝐵  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 12 | 11 | 3adant3r3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐴  =  𝐵  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 13 |  | simplr1 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 14 |  | fveecn | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 15 | 13 14 | sylancom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 16 |  | simplr3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 17 |  | fveecn | ⊢ ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐶 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 18 | 16 17 | sylancom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐶 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 19 |  | mullid | ⊢ ( ( 𝐴 ‘ 𝑖 )  ∈  ℂ  →  ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 20 |  | mul02 | ⊢ ( ( 𝐶 ‘ 𝑖 )  ∈  ℂ  →  ( 0  ·  ( 𝐶 ‘ 𝑖 ) )  =  0 ) | 
						
							| 21 | 19 20 | oveqan12d | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑖 )  ∈  ℂ )  →  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( ( 𝐴 ‘ 𝑖 )  +  0 ) ) | 
						
							| 22 |  | addrid | ⊢ ( ( 𝐴 ‘ 𝑖 )  ∈  ℂ  →  ( ( 𝐴 ‘ 𝑖 )  +  0 )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑖 )  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑖 )  +  0 )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 24 | 21 23 | eqtrd | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑖 )  ∈  ℂ )  →  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 25 | 15 18 24 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( 𝐵 ‘ 𝑖 )  ↔  ( 𝐴 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 27 |  | eqcom | ⊢ ( ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( 𝐵 ‘ 𝑖 )  ↔  ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) | 
						
							| 28 | 26 27 | bitr3di | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 )  ↔  ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) ) | 
						
							| 29 | 28 | ralbidva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) ) | 
						
							| 30 | 12 29 | bitrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐴  =  𝐵  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) ) | 
						
							| 31 | 9 30 | imbitrrid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ∧  𝑇  =  0 )  →  𝐴  =  𝐵 ) ) | 
						
							| 32 | 31 | expdimp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) )  →  ( 𝑇  =  0  →  𝐴  =  𝐵 ) ) | 
						
							| 33 | 32 | necon3d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) )  →  ( 𝐴  ≠  𝐵  →  𝑇  ≠  0 ) ) | 
						
							| 34 | 33 | 3impia | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ∧  𝐴  ≠  𝐵 )  →  𝑇  ≠  0 ) |