Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑇 = 0 → ( 1 − 𝑇 ) = ( 1 − 0 ) ) |
2 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑇 = 0 → ( 1 − 𝑇 ) = 1 ) |
4 |
3
|
oveq1d |
⊢ ( 𝑇 = 0 → ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) = ( 1 · ( 𝐴 ‘ 𝑖 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑇 = 0 → ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) = ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝑇 = 0 → ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑇 = 0 → ( ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑇 = 0 → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
9 |
8
|
biimpac |
⊢ ( ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ 𝑇 = 0 ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
10 |
|
eqeefv |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) |
12 |
11
|
3adant3r3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) |
13 |
|
simplr1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
14 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
15 |
13 14
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
16 |
|
simplr3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
17 |
|
fveecn |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
18 |
16 17
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
19 |
|
mulid2 |
⊢ ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ → ( 1 · ( 𝐴 ‘ 𝑖 ) ) = ( 𝐴 ‘ 𝑖 ) ) |
20 |
|
mul02 |
⊢ ( ( 𝐶 ‘ 𝑖 ) ∈ ℂ → ( 0 · ( 𝐶 ‘ 𝑖 ) ) = 0 ) |
21 |
19 20
|
oveqan12d |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) = ( ( 𝐴 ‘ 𝑖 ) + 0 ) ) |
22 |
|
addid1 |
⊢ ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ → ( ( 𝐴 ‘ 𝑖 ) + 0 ) = ( 𝐴 ‘ 𝑖 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( ( 𝐴 ‘ 𝑖 ) + 0 ) = ( 𝐴 ‘ 𝑖 ) ) |
24 |
21 23
|
eqtrd |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) = ( 𝐴 ‘ 𝑖 ) ) |
25 |
15 18 24
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) = ( 𝐴 ‘ 𝑖 ) ) |
26 |
25
|
eqeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) = ( 𝐵 ‘ 𝑖 ) ↔ ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) |
27 |
|
eqcom |
⊢ ( ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) = ( 𝐵 ‘ 𝑖 ) ↔ ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) |
28 |
26 27
|
bitr3di |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ↔ ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
29 |
28
|
ralbidva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
30 |
12 29
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( 1 · ( 𝐴 ‘ 𝑖 ) ) + ( 0 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) |
31 |
9 30
|
syl5ibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ 𝑇 = 0 ) → 𝐴 = 𝐵 ) ) |
32 |
31
|
expdimp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) → ( 𝑇 = 0 → 𝐴 = 𝐵 ) ) |
33 |
32
|
necon3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) → ( 𝐴 ≠ 𝐵 → 𝑇 ≠ 0 ) ) |
34 |
33
|
3impia |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ 𝐴 ≠ 𝐵 ) → 𝑇 ≠ 0 ) |