| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( T = 0 -> ( 1 - T ) = ( 1 - 0 ) ) | 
						
							| 2 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( T = 0 -> ( 1 - T ) = 1 ) | 
						
							| 4 | 3 | oveq1d |  |-  ( T = 0 -> ( ( 1 - T ) x. ( A ` i ) ) = ( 1 x. ( A ` i ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( T = 0 -> ( T x. ( C ` i ) ) = ( 0 x. ( C ` i ) ) ) | 
						
							| 6 | 4 5 | oveq12d |  |-  ( T = 0 -> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( T = 0 -> ( ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) <-> ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) ) | 
						
							| 8 | 7 | ralbidv |  |-  ( T = 0 -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) ) | 
						
							| 9 | 8 | biimpac |  |-  ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ T = 0 ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) | 
						
							| 10 |  | eqeefv |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) | 
						
							| 11 | 10 | 3adant1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) | 
						
							| 12 | 11 | 3adant3r3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) | 
						
							| 13 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> A e. ( EE ` N ) ) | 
						
							| 14 |  | fveecn |  |-  ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) | 
						
							| 15 | 13 14 | sylancom |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) | 
						
							| 16 |  | simplr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> C e. ( EE ` N ) ) | 
						
							| 17 |  | fveecn |  |-  ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) | 
						
							| 18 | 16 17 | sylancom |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) | 
						
							| 19 |  | mullid |  |-  ( ( A ` i ) e. CC -> ( 1 x. ( A ` i ) ) = ( A ` i ) ) | 
						
							| 20 |  | mul02 |  |-  ( ( C ` i ) e. CC -> ( 0 x. ( C ` i ) ) = 0 ) | 
						
							| 21 | 19 20 | oveqan12d |  |-  ( ( ( A ` i ) e. CC /\ ( C ` i ) e. CC ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) = ( ( A ` i ) + 0 ) ) | 
						
							| 22 |  | addrid |  |-  ( ( A ` i ) e. CC -> ( ( A ` i ) + 0 ) = ( A ` i ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( A ` i ) e. CC /\ ( C ` i ) e. CC ) -> ( ( A ` i ) + 0 ) = ( A ` i ) ) | 
						
							| 24 | 21 23 | eqtrd |  |-  ( ( ( A ` i ) e. CC /\ ( C ` i ) e. CC ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) = ( A ` i ) ) | 
						
							| 25 | 15 18 24 | syl2anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) = ( A ` i ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) = ( B ` i ) <-> ( A ` i ) = ( B ` i ) ) ) | 
						
							| 27 |  | eqcom |  |-  ( ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) = ( B ` i ) <-> ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) | 
						
							| 28 | 26 27 | bitr3di |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) = ( B ` i ) <-> ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) ) | 
						
							| 29 | 28 | ralbidva |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) ) | 
						
							| 30 | 12 29 | bitrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( C ` i ) ) ) ) ) | 
						
							| 31 | 9 30 | imbitrrid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ T = 0 ) -> A = B ) ) | 
						
							| 32 | 31 | expdimp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> ( T = 0 -> A = B ) ) | 
						
							| 33 | 32 | necon3d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> ( A =/= B -> T =/= 0 ) ) | 
						
							| 34 | 33 | 3impia |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A =/= B ) -> T =/= 0 ) |