Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|- ( A = C -> ( A ` i ) = ( C ` i ) ) |
2 |
1
|
oveq2d |
|- ( A = C -> ( T x. ( A ` i ) ) = ( T x. ( C ` i ) ) ) |
3 |
2
|
oveq2d |
|- ( A = C -> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) |
4 |
3
|
eqeq2d |
|- ( A = C -> ( ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) |
5 |
4
|
ralbidv |
|- ( A = C -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) |
6 |
5
|
biimparc |
|- ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A = C ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
7 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> A e. ( EE ` N ) ) |
8 |
|
simplr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> B e. ( EE ` N ) ) |
9 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
10 |
7 8 9
|
syl2anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
11 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
12 |
7 11
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
13 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
14 |
13
|
simp1bi |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
15 |
14
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> T e. CC ) |
16 |
15
|
ad2antlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> T e. CC ) |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
|
npcan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
19 |
17 18
|
mpan |
|- ( T e. CC -> ( ( 1 - T ) + T ) = 1 ) |
20 |
19
|
oveq1d |
|- ( T e. CC -> ( ( ( 1 - T ) + T ) x. ( A ` i ) ) = ( 1 x. ( A ` i ) ) ) |
21 |
|
mulid2 |
|- ( ( A ` i ) e. CC -> ( 1 x. ( A ` i ) ) = ( A ` i ) ) |
22 |
20 21
|
sylan9eqr |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) + T ) x. ( A ` i ) ) = ( A ` i ) ) |
23 |
|
subcl |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
24 |
17 23
|
mpan |
|- ( T e. CC -> ( 1 - T ) e. CC ) |
25 |
24
|
adantl |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
26 |
|
simpr |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> T e. CC ) |
27 |
|
simpl |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( A ` i ) e. CC ) |
28 |
25 26 27
|
adddird |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) + T ) x. ( A ` i ) ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
29 |
22 28
|
eqtr3d |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( A ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
30 |
29
|
eqeq1d |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( ( A ` i ) = ( B ` i ) <-> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( B ` i ) ) ) |
31 |
12 16 30
|
syl2anc |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) = ( B ` i ) <-> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( B ` i ) ) ) |
32 |
|
eqcom |
|- ( ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( B ` i ) <-> ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
33 |
31 32
|
bitrdi |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) = ( B ` i ) <-> ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) ) |
34 |
33
|
ralbidva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) ) |
35 |
10 34
|
bitrd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) ) |
36 |
6 35
|
syl5ibr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A = C ) -> A = B ) ) |
37 |
36
|
expd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) -> ( A = C -> A = B ) ) ) |
38 |
37
|
impr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A = C -> A = B ) ) |
39 |
38
|
necon3d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A =/= B -> A =/= C ) ) |
40 |
39
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> ( A =/= B -> A =/= C ) ) ) |
41 |
40
|
com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A =/= B -> ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> A =/= C ) ) ) |
42 |
41
|
exp4a |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A =/= B -> ( T e. ( 0 [,] 1 ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) -> A =/= C ) ) ) ) |
43 |
42
|
3imp2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> A =/= C ) |
44 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> A e. ( EE ` N ) ) |
45 |
|
simplr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> C e. ( EE ` N ) ) |
46 |
|
eqeelen |
|- ( ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A = C <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = 0 ) ) |
47 |
44 45 46
|
syl2anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A = C <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = 0 ) ) |
48 |
47
|
necon3bid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A =/= C <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) ) |
49 |
43 48
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) |