Step |
Hyp |
Ref |
Expression |
1 |
|
simp22l |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T e. ( 0 [,] 1 ) ) |
2 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
3 |
2
|
simp1bi |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
4 |
|
resqcl |
|- ( T e. RR -> ( T ^ 2 ) e. RR ) |
5 |
4
|
recnd |
|- ( T e. RR -> ( T ^ 2 ) e. CC ) |
6 |
1 3 5
|
3syl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T ^ 2 ) e. CC ) |
7 |
|
simp22r |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> S e. ( 0 [,] 1 ) ) |
8 |
|
elicc01 |
|- ( S e. ( 0 [,] 1 ) <-> ( S e. RR /\ 0 <_ S /\ S <_ 1 ) ) |
9 |
8
|
simp1bi |
|- ( S e. ( 0 [,] 1 ) -> S e. RR ) |
10 |
|
resqcl |
|- ( S e. RR -> ( S ^ 2 ) e. RR ) |
11 |
10
|
recnd |
|- ( S e. RR -> ( S ^ 2 ) e. CC ) |
12 |
7 9 11
|
3syl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( S ^ 2 ) e. CC ) |
13 |
|
fzfid |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 ... N ) e. Fin ) |
14 |
|
simprl1 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A e. ( EE ` N ) ) |
16 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) |
17 |
15 16
|
sylan |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) |
18 |
|
simprl3 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) |
19 |
18
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> C e. ( EE ` N ) ) |
20 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) |
21 |
19 20
|
sylan |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) |
22 |
17 21
|
subcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) |
23 |
22
|
sqcld |
|- ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) |
24 |
13 23
|
fsumcl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) |
25 |
|
simp1l |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> N e. NN ) |
26 |
|
simp1rl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
27 |
|
simp21 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A =/= B ) |
28 |
|
simp23l |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) |
29 |
|
ax5seglem5 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) |
30 |
25 26 27 1 28 29
|
syl23anc |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) |
31 |
|
simp3l |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) |
32 |
|
simprl2 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> B e. ( EE ` N ) ) |
33 |
|
simprr1 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> D e. ( EE ` N ) ) |
34 |
|
simprr2 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> E e. ( EE ` N ) ) |
35 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) |
36 |
14 32 33 34 35
|
syl22anc |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) |
37 |
36
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) |
38 |
31 37
|
mpbid |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) |
39 |
|
ax5seglem1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
40 |
25 15 19 1 28 39
|
syl122anc |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
41 |
33
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> D e. ( EE ` N ) ) |
42 |
|
simprr3 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> F e. ( EE ` N ) ) |
43 |
42
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> F e. ( EE ` N ) ) |
44 |
|
simp23r |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) |
45 |
|
ax5seglem1 |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( S e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
46 |
25 41 43 7 44 45
|
syl122anc |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
47 |
38 40 46
|
3eqtr3d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
48 |
|
simp1rr |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
49 |
|
simp22 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) ) |
50 |
|
simp23 |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) |
51 |
|
simp3r |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. B , C >. Cgr <. E , F >. ) |
52 |
|
ax5seglem3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
53 |
25 26 48 49 50 31 51 52
|
syl322anc |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
54 |
53
|
oveq2d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
55 |
47 54
|
eqtr4d |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
56 |
6 12 24 30 55
|
mulcan2ad |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T ^ 2 ) = ( S ^ 2 ) ) |
57 |
2
|
simp2bi |
|- ( T e. ( 0 [,] 1 ) -> 0 <_ T ) |
58 |
3 57
|
jca |
|- ( T e. ( 0 [,] 1 ) -> ( T e. RR /\ 0 <_ T ) ) |
59 |
1 58
|
syl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T e. RR /\ 0 <_ T ) ) |
60 |
8
|
simp2bi |
|- ( S e. ( 0 [,] 1 ) -> 0 <_ S ) |
61 |
9 60
|
jca |
|- ( S e. ( 0 [,] 1 ) -> ( S e. RR /\ 0 <_ S ) ) |
62 |
7 61
|
syl |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( S e. RR /\ 0 <_ S ) ) |
63 |
|
sq11 |
|- ( ( ( T e. RR /\ 0 <_ T ) /\ ( S e. RR /\ 0 <_ S ) ) -> ( ( T ^ 2 ) = ( S ^ 2 ) <-> T = S ) ) |
64 |
59 62 63
|
syl2anc |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) = ( S ^ 2 ) <-> T = S ) ) |
65 |
56 64
|
mpbid |
|- ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T = S ) |