| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp22l |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T e. ( 0 [,] 1 ) ) | 
						
							| 2 |  | elicc01 |  |-  ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) | 
						
							| 3 | 2 | simp1bi |  |-  ( T e. ( 0 [,] 1 ) -> T e. RR ) | 
						
							| 4 |  | resqcl |  |-  ( T e. RR -> ( T ^ 2 ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( T e. RR -> ( T ^ 2 ) e. CC ) | 
						
							| 6 | 1 3 5 | 3syl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T ^ 2 ) e. CC ) | 
						
							| 7 |  | simp22r |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> S e. ( 0 [,] 1 ) ) | 
						
							| 8 |  | elicc01 |  |-  ( S e. ( 0 [,] 1 ) <-> ( S e. RR /\ 0 <_ S /\ S <_ 1 ) ) | 
						
							| 9 | 8 | simp1bi |  |-  ( S e. ( 0 [,] 1 ) -> S e. RR ) | 
						
							| 10 |  | resqcl |  |-  ( S e. RR -> ( S ^ 2 ) e. RR ) | 
						
							| 11 | 10 | recnd |  |-  ( S e. RR -> ( S ^ 2 ) e. CC ) | 
						
							| 12 | 7 9 11 | 3syl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( S ^ 2 ) e. CC ) | 
						
							| 13 |  | fzfid |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 14 |  | simprl1 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A e. ( EE ` N ) ) | 
						
							| 16 |  | fveecn |  |-  ( ( A e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 17 | 15 16 | sylan |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 18 |  | simprl3 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 19 | 18 | 3ad2ant1 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> C e. ( EE ` N ) ) | 
						
							| 20 |  | fveecn |  |-  ( ( C e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 21 | 19 20 | sylan |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 22 | 17 21 | subcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) | 
						
							| 23 | 22 | sqcld |  |-  ( ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) | 
						
							| 24 | 13 23 | fsumcl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) | 
						
							| 25 |  | simp1l |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> N e. NN ) | 
						
							| 26 |  | simp1rl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 27 |  | simp21 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A =/= B ) | 
						
							| 28 |  | simp23l |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) | 
						
							| 29 |  | ax5seglem5 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) | 
						
							| 30 | 25 26 27 1 28 29 | syl23anc |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) | 
						
							| 31 |  | simp3l |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) | 
						
							| 32 |  | simprl2 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 33 |  | simprr1 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 34 |  | simprr2 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 35 |  | brcgr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) | 
						
							| 36 | 14 32 33 34 35 | syl22anc |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) | 
						
							| 38 | 31 37 | mpbid |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) | 
						
							| 39 |  | ax5seglem1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 40 | 25 15 19 1 28 39 | syl122anc |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 41 | 33 | 3ad2ant1 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> D e. ( EE ` N ) ) | 
						
							| 42 |  | simprr3 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 43 | 42 | 3ad2ant1 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> F e. ( EE ` N ) ) | 
						
							| 44 |  | simp23r |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) | 
						
							| 45 |  | ax5seglem1 |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( S e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) | 
						
							| 46 | 25 41 43 7 44 45 | syl122anc |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) | 
						
							| 47 | 38 40 46 | 3eqtr3d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) | 
						
							| 48 |  | simp1rr |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) | 
						
							| 49 |  | simp22 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) ) | 
						
							| 50 |  | simp23 |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) | 
						
							| 51 |  | simp3r |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. B , C >. Cgr <. E , F >. ) | 
						
							| 52 |  | ax5seglem3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) | 
						
							| 53 | 25 26 48 49 50 31 51 52 | syl322anc |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) | 
						
							| 55 | 47 54 | eqtr4d |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 56 | 6 12 24 30 55 | mulcan2ad |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T ^ 2 ) = ( S ^ 2 ) ) | 
						
							| 57 | 2 | simp2bi |  |-  ( T e. ( 0 [,] 1 ) -> 0 <_ T ) | 
						
							| 58 | 3 57 | jca |  |-  ( T e. ( 0 [,] 1 ) -> ( T e. RR /\ 0 <_ T ) ) | 
						
							| 59 | 1 58 | syl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T e. RR /\ 0 <_ T ) ) | 
						
							| 60 | 8 | simp2bi |  |-  ( S e. ( 0 [,] 1 ) -> 0 <_ S ) | 
						
							| 61 | 9 60 | jca |  |-  ( S e. ( 0 [,] 1 ) -> ( S e. RR /\ 0 <_ S ) ) | 
						
							| 62 | 7 61 | syl |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( S e. RR /\ 0 <_ S ) ) | 
						
							| 63 |  | sq11 |  |-  ( ( ( T e. RR /\ 0 <_ T ) /\ ( S e. RR /\ 0 <_ S ) ) -> ( ( T ^ 2 ) = ( S ^ 2 ) <-> T = S ) ) | 
						
							| 64 | 59 62 63 | syl2anc |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) = ( S ^ 2 ) <-> T = S ) ) | 
						
							| 65 | 56 64 | mpbid |  |-  ( ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) ) /\ ( A =/= B /\ ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T = S ) |