Step |
Hyp |
Ref |
Expression |
1 |
|
ax5seglem7.1 |
|- A e. CC |
2 |
|
ax5seglem7.2 |
|- T e. CC |
3 |
|
ax5seglem7.3 |
|- C e. CC |
4 |
|
ax5seglem7.4 |
|- D e. CC |
5 |
3 4
|
binom2subi |
|- ( ( C - D ) ^ 2 ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) + ( D ^ 2 ) ) |
6 |
5
|
oveq2i |
|- ( T x. ( ( C - D ) ^ 2 ) ) = ( T x. ( ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) + ( D ^ 2 ) ) ) |
7 |
3
|
sqcli |
|- ( C ^ 2 ) e. CC |
8 |
|
2cn |
|- 2 e. CC |
9 |
3 4
|
mulcli |
|- ( C x. D ) e. CC |
10 |
8 9
|
mulcli |
|- ( 2 x. ( C x. D ) ) e. CC |
11 |
7 10
|
subcli |
|- ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) e. CC |
12 |
4
|
sqcli |
|- ( D ^ 2 ) e. CC |
13 |
2 11 12
|
adddii |
|- ( T x. ( ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) + ( D ^ 2 ) ) ) = ( ( T x. ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
14 |
2 7 10
|
subdii |
|- ( T x. ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) ) = ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) |
15 |
14
|
oveq1i |
|- ( ( T x. ( ( C ^ 2 ) - ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
16 |
6 13 15
|
3eqtri |
|- ( T x. ( ( C - D ) ^ 2 ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
17 2
|
subcli |
|- ( 1 - T ) e. CC |
19 |
18 1
|
mulcli |
|- ( ( 1 - T ) x. A ) e. CC |
20 |
19
|
sqcli |
|- ( ( ( 1 - T ) x. A ) ^ 2 ) e. CC |
21 |
2 3
|
mulcli |
|- ( T x. C ) e. CC |
22 |
21 4
|
subcli |
|- ( ( T x. C ) - D ) e. CC |
23 |
19 22
|
mulcli |
|- ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) e. CC |
24 |
8 23
|
mulcli |
|- ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) e. CC |
25 |
20 24
|
addcli |
|- ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) e. CC |
26 |
21
|
sqcli |
|- ( ( T x. C ) ^ 2 ) e. CC |
27 |
26 12
|
addcli |
|- ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) e. CC |
28 |
25 27
|
addcli |
|- ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) e. CC |
29 |
21 4
|
mulcli |
|- ( ( T x. C ) x. D ) e. CC |
30 |
8 29
|
mulcli |
|- ( 2 x. ( ( T x. C ) x. D ) ) e. CC |
31 |
2 7
|
mulcli |
|- ( T x. ( C ^ 2 ) ) e. CC |
32 |
2 12
|
mulcli |
|- ( T x. ( D ^ 2 ) ) e. CC |
33 |
31 32
|
addcli |
|- ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) e. CC |
34 |
|
subadd23 |
|- ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) e. CC /\ ( 2 x. ( ( T x. C ) x. D ) ) e. CC /\ ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) e. CC ) -> ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) ) = ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) ) |
35 |
28 30 33 34
|
mp3an |
|- ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) ) = ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) |
36 |
35
|
oveq1i |
|- ( ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) = ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
37 |
19 22
|
binom2i |
|- ( ( ( ( 1 - T ) x. A ) + ( ( T x. C ) - D ) ) ^ 2 ) = ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) - D ) ^ 2 ) ) |
38 |
19 21 4
|
addsubassi |
|- ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) = ( ( ( 1 - T ) x. A ) + ( ( T x. C ) - D ) ) |
39 |
38
|
oveq1i |
|- ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) = ( ( ( ( 1 - T ) x. A ) + ( ( T x. C ) - D ) ) ^ 2 ) |
40 |
25 27 30
|
addsubassi |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) = ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) |
41 |
21 4
|
binom2subi |
|- ( ( ( T x. C ) - D ) ^ 2 ) = ( ( ( ( T x. C ) ^ 2 ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( D ^ 2 ) ) |
42 |
26 12 30
|
addsubi |
|- ( ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) = ( ( ( ( T x. C ) ^ 2 ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( D ^ 2 ) ) |
43 |
41 42
|
eqtr4i |
|- ( ( ( T x. C ) - D ) ^ 2 ) = ( ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) |
44 |
43
|
oveq2i |
|- ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) - D ) ^ 2 ) ) = ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) |
45 |
40 44
|
eqtr4i |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) = ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) - D ) ^ 2 ) ) |
46 |
37 39 45
|
3eqtr4i |
|- ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) = ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) |
47 |
1 3
|
binom2subi |
|- ( ( A - C ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) + ( C ^ 2 ) ) |
48 |
47
|
oveq2i |
|- ( T x. ( ( A - C ) ^ 2 ) ) = ( T x. ( ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) + ( C ^ 2 ) ) ) |
49 |
1
|
sqcli |
|- ( A ^ 2 ) e. CC |
50 |
1 3
|
mulcli |
|- ( A x. C ) e. CC |
51 |
8 50
|
mulcli |
|- ( 2 x. ( A x. C ) ) e. CC |
52 |
49 51
|
subcli |
|- ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) e. CC |
53 |
2 52 7
|
adddii |
|- ( T x. ( ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) + ( C ^ 2 ) ) ) = ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) + ( T x. ( C ^ 2 ) ) ) |
54 |
48 53
|
eqtri |
|- ( T x. ( ( A - C ) ^ 2 ) ) = ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) + ( T x. ( C ^ 2 ) ) ) |
55 |
1 4
|
binom2subi |
|- ( ( A - D ) ^ 2 ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) + ( D ^ 2 ) ) |
56 |
54 55
|
oveq12i |
|- ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) = ( ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) + ( T x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) + ( D ^ 2 ) ) ) |
57 |
2 52
|
mulcli |
|- ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) e. CC |
58 |
1 4
|
mulcli |
|- ( A x. D ) e. CC |
59 |
8 58
|
mulcli |
|- ( 2 x. ( A x. D ) ) e. CC |
60 |
49 59
|
subcli |
|- ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) e. CC |
61 |
57 31 60 12
|
addsub4i |
|- ( ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) + ( T x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) + ( D ^ 2 ) ) ) = ( ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) + ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) |
62 |
56 61
|
eqtri |
|- ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) = ( ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) + ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) |
63 |
62
|
oveq2i |
|- ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) = ( ( 1 - T ) x. ( ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) + ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) |
64 |
57 60
|
subcli |
|- ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) e. CC |
65 |
31 12
|
subcli |
|- ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) e. CC |
66 |
18 64 65
|
adddii |
|- ( ( 1 - T ) x. ( ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) + ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) = ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) + ( ( 1 - T ) x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) |
67 |
17 2 65
|
subdiri |
|- ( ( 1 - T ) x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) = ( ( 1 x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) - ( T x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) |
68 |
65
|
mulid2i |
|- ( 1 x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) = ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) |
69 |
2 31 12
|
subdii |
|- ( T x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) = ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( T x. ( D ^ 2 ) ) ) |
70 |
68 69
|
oveq12i |
|- ( ( 1 x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) - ( T x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) - ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( T x. ( D ^ 2 ) ) ) ) |
71 |
2 31
|
mulcli |
|- ( T x. ( T x. ( C ^ 2 ) ) ) e. CC |
72 |
|
subsub3 |
|- ( ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) e. CC /\ ( T x. ( T x. ( C ^ 2 ) ) ) e. CC /\ ( T x. ( D ^ 2 ) ) e. CC ) -> ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) - ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( T x. ( D ^ 2 ) ) ) ) = ( ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( T x. ( T x. ( C ^ 2 ) ) ) ) ) |
73 |
65 71 32 72
|
mp3an |
|- ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) - ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( T x. ( D ^ 2 ) ) ) ) = ( ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( T x. ( T x. ( C ^ 2 ) ) ) ) |
74 |
31 32 12
|
addsubi |
|- ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( D ^ 2 ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) |
75 |
74
|
oveq1i |
|- ( ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( D ^ 2 ) ) - ( T x. ( T x. ( C ^ 2 ) ) ) ) = ( ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( T x. ( T x. ( C ^ 2 ) ) ) ) |
76 |
|
subsub4 |
|- ( ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) e. CC /\ ( D ^ 2 ) e. CC /\ ( T x. ( T x. ( C ^ 2 ) ) ) e. CC ) -> ( ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( D ^ 2 ) ) - ( T x. ( T x. ( C ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
77 |
33 12 71 76
|
mp3an |
|- ( ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( D ^ 2 ) ) - ( T x. ( T x. ( C ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) |
78 |
73 75 77
|
3eqtr2i |
|- ( ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) - ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( T x. ( D ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) |
79 |
67 70 78
|
3eqtri |
|- ( ( 1 - T ) x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) |
80 |
79
|
oveq2i |
|- ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) + ( ( 1 - T ) x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) = ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
81 |
18 64
|
mulcli |
|- ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) e. CC |
82 |
12 71
|
addcli |
|- ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) e. CC |
83 |
|
addsub12 |
|- ( ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) e. CC /\ ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) e. CC /\ ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) e. CC ) -> ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) ) |
84 |
81 33 82 83
|
mp3an |
|- ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
85 |
80 84
|
eqtri |
|- ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) + ( ( 1 - T ) x. ( ( T x. ( C ^ 2 ) ) - ( D ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
86 |
63 66 85
|
3eqtri |
|- ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
87 |
46 86
|
oveq12i |
|- ( ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) ) = ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) ) |
88 |
28 30
|
subcli |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) e. CC |
89 |
81 82
|
subcli |
|- ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) e. CC |
90 |
88 33 89
|
addassi |
|- ( ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) = ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) ) |
91 |
87 90
|
eqtr4i |
|- ( ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) ) = ( ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) + ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
92 |
33 30
|
subcli |
|- ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) e. CC |
93 |
28 89 92
|
add32i |
|- ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) = ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
94 |
36 91 93
|
3eqtr4i |
|- ( ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) ) = ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) |
95 |
|
subsub2 |
|- ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) e. CC /\ ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) e. CC /\ ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) e. CC ) -> ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) = ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) ) |
96 |
28 82 81 95
|
mp3an |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) = ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) |
97 |
25 26 12
|
addassi |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) + ( D ^ 2 ) ) = ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) |
98 |
25 26
|
addcomi |
|- ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) = ( ( ( T x. C ) ^ 2 ) + ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) ) |
99 |
2 3
|
sqmuli |
|- ( ( T x. C ) ^ 2 ) = ( ( T ^ 2 ) x. ( C ^ 2 ) ) |
100 |
2
|
sqvali |
|- ( T ^ 2 ) = ( T x. T ) |
101 |
100
|
oveq1i |
|- ( ( T ^ 2 ) x. ( C ^ 2 ) ) = ( ( T x. T ) x. ( C ^ 2 ) ) |
102 |
2 2 7
|
mulassi |
|- ( ( T x. T ) x. ( C ^ 2 ) ) = ( T x. ( T x. ( C ^ 2 ) ) ) |
103 |
99 101 102
|
3eqtri |
|- ( ( T x. C ) ^ 2 ) = ( T x. ( T x. ( C ^ 2 ) ) ) |
104 |
18 1
|
sqmuli |
|- ( ( ( 1 - T ) x. A ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. ( A ^ 2 ) ) |
105 |
18
|
sqvali |
|- ( ( 1 - T ) ^ 2 ) = ( ( 1 - T ) x. ( 1 - T ) ) |
106 |
105
|
oveq1i |
|- ( ( ( 1 - T ) ^ 2 ) x. ( A ^ 2 ) ) = ( ( ( 1 - T ) x. ( 1 - T ) ) x. ( A ^ 2 ) ) |
107 |
18 18 49
|
mulassi |
|- ( ( ( 1 - T ) x. ( 1 - T ) ) x. ( A ^ 2 ) ) = ( ( 1 - T ) x. ( ( 1 - T ) x. ( A ^ 2 ) ) ) |
108 |
17 2 49
|
subdiri |
|- ( ( 1 - T ) x. ( A ^ 2 ) ) = ( ( 1 x. ( A ^ 2 ) ) - ( T x. ( A ^ 2 ) ) ) |
109 |
49
|
mulid2i |
|- ( 1 x. ( A ^ 2 ) ) = ( A ^ 2 ) |
110 |
109
|
oveq1i |
|- ( ( 1 x. ( A ^ 2 ) ) - ( T x. ( A ^ 2 ) ) ) = ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) |
111 |
108 110
|
eqtri |
|- ( ( 1 - T ) x. ( A ^ 2 ) ) = ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) |
112 |
111
|
oveq2i |
|- ( ( 1 - T ) x. ( ( 1 - T ) x. ( A ^ 2 ) ) ) = ( ( 1 - T ) x. ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) ) |
113 |
107 112
|
eqtri |
|- ( ( ( 1 - T ) x. ( 1 - T ) ) x. ( A ^ 2 ) ) = ( ( 1 - T ) x. ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) ) |
114 |
104 106 113
|
3eqtri |
|- ( ( ( 1 - T ) x. A ) ^ 2 ) = ( ( 1 - T ) x. ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) ) |
115 |
8 19 22
|
mul12i |
|- ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) = ( ( ( 1 - T ) x. A ) x. ( 2 x. ( ( T x. C ) - D ) ) ) |
116 |
8 22
|
mulcli |
|- ( 2 x. ( ( T x. C ) - D ) ) e. CC |
117 |
18 1 116
|
mulassi |
|- ( ( ( 1 - T ) x. A ) x. ( 2 x. ( ( T x. C ) - D ) ) ) = ( ( 1 - T ) x. ( A x. ( 2 x. ( ( T x. C ) - D ) ) ) ) |
118 |
1 8
|
mulcomi |
|- ( A x. 2 ) = ( 2 x. A ) |
119 |
118
|
oveq1i |
|- ( ( A x. 2 ) x. ( ( T x. C ) - D ) ) = ( ( 2 x. A ) x. ( ( T x. C ) - D ) ) |
120 |
1 8 22
|
mulassi |
|- ( ( A x. 2 ) x. ( ( T x. C ) - D ) ) = ( A x. ( 2 x. ( ( T x. C ) - D ) ) ) |
121 |
119 120
|
eqtr3i |
|- ( ( 2 x. A ) x. ( ( T x. C ) - D ) ) = ( A x. ( 2 x. ( ( T x. C ) - D ) ) ) |
122 |
8 1
|
mulcli |
|- ( 2 x. A ) e. CC |
123 |
122 21 4
|
subdii |
|- ( ( 2 x. A ) x. ( ( T x. C ) - D ) ) = ( ( ( 2 x. A ) x. ( T x. C ) ) - ( ( 2 x. A ) x. D ) ) |
124 |
122 2 3
|
mul12i |
|- ( ( 2 x. A ) x. ( T x. C ) ) = ( T x. ( ( 2 x. A ) x. C ) ) |
125 |
8 1 3
|
mulassi |
|- ( ( 2 x. A ) x. C ) = ( 2 x. ( A x. C ) ) |
126 |
125
|
oveq2i |
|- ( T x. ( ( 2 x. A ) x. C ) ) = ( T x. ( 2 x. ( A x. C ) ) ) |
127 |
124 126
|
eqtri |
|- ( ( 2 x. A ) x. ( T x. C ) ) = ( T x. ( 2 x. ( A x. C ) ) ) |
128 |
8 1 4
|
mulassi |
|- ( ( 2 x. A ) x. D ) = ( 2 x. ( A x. D ) ) |
129 |
127 128
|
oveq12i |
|- ( ( ( 2 x. A ) x. ( T x. C ) ) - ( ( 2 x. A ) x. D ) ) = ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) |
130 |
123 129
|
eqtri |
|- ( ( 2 x. A ) x. ( ( T x. C ) - D ) ) = ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) |
131 |
121 130
|
eqtr3i |
|- ( A x. ( 2 x. ( ( T x. C ) - D ) ) ) = ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) |
132 |
131
|
oveq2i |
|- ( ( 1 - T ) x. ( A x. ( 2 x. ( ( T x. C ) - D ) ) ) ) = ( ( 1 - T ) x. ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) |
133 |
115 117 132
|
3eqtri |
|- ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) = ( ( 1 - T ) x. ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) |
134 |
114 133
|
oveq12i |
|- ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) = ( ( ( 1 - T ) x. ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) ) + ( ( 1 - T ) x. ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) ) |
135 |
2 49
|
mulcli |
|- ( T x. ( A ^ 2 ) ) e. CC |
136 |
49 135
|
subcli |
|- ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) e. CC |
137 |
2 51
|
mulcli |
|- ( T x. ( 2 x. ( A x. C ) ) ) e. CC |
138 |
137 59
|
subcli |
|- ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) e. CC |
139 |
18 136 138
|
adddii |
|- ( ( 1 - T ) x. ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) ) = ( ( ( 1 - T ) x. ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) ) + ( ( 1 - T ) x. ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) ) |
140 |
2 49 51
|
subdii |
|- ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) = ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) |
141 |
140
|
oveq2i |
|- ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) |
142 |
140 57
|
eqeltrri |
|- ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) e. CC |
143 |
|
sub32 |
|- ( ( ( A ^ 2 ) e. CC /\ ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) e. CC /\ ( 2 x. ( A x. D ) ) e. CC ) -> ( ( ( A ^ 2 ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) - ( 2 x. ( A x. D ) ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) ) |
144 |
49 142 59 143
|
mp3an |
|- ( ( ( A ^ 2 ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) - ( 2 x. ( A x. D ) ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) |
145 |
141 144
|
eqtr4i |
|- ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) = ( ( ( A ^ 2 ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) - ( 2 x. ( A x. D ) ) ) |
146 |
|
subsub |
|- ( ( ( A ^ 2 ) e. CC /\ ( T x. ( A ^ 2 ) ) e. CC /\ ( T x. ( 2 x. ( A x. C ) ) ) e. CC ) -> ( ( A ^ 2 ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) = ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( T x. ( 2 x. ( A x. C ) ) ) ) ) |
147 |
49 135 137 146
|
mp3an |
|- ( ( A ^ 2 ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) = ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( T x. ( 2 x. ( A x. C ) ) ) ) |
148 |
147
|
oveq1i |
|- ( ( ( A ^ 2 ) - ( ( T x. ( A ^ 2 ) ) - ( T x. ( 2 x. ( A x. C ) ) ) ) ) - ( 2 x. ( A x. D ) ) ) = ( ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( T x. ( 2 x. ( A x. C ) ) ) ) - ( 2 x. ( A x. D ) ) ) |
149 |
136 137 59
|
addsubassi |
|- ( ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( T x. ( 2 x. ( A x. C ) ) ) ) - ( 2 x. ( A x. D ) ) ) = ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) |
150 |
145 148 149
|
3eqtrri |
|- ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) |
151 |
150
|
oveq2i |
|- ( ( 1 - T ) x. ( ( ( A ^ 2 ) - ( T x. ( A ^ 2 ) ) ) + ( ( T x. ( 2 x. ( A x. C ) ) ) - ( 2 x. ( A x. D ) ) ) ) ) = ( ( 1 - T ) x. ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) ) |
152 |
134 139 151
|
3eqtr2i |
|- ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) = ( ( 1 - T ) x. ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) ) |
153 |
57 60
|
negsubdi2i |
|- -u ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) = ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) |
154 |
153
|
oveq2i |
|- ( ( 1 - T ) x. -u ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) = ( ( 1 - T ) x. ( ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) - ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) ) ) |
155 |
18 64
|
mulneg2i |
|- ( ( 1 - T ) x. -u ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) = -u ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) |
156 |
152 154 155
|
3eqtr2i |
|- ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) = -u ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) |
157 |
103 156
|
oveq12i |
|- ( ( ( T x. C ) ^ 2 ) + ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) ) = ( ( T x. ( T x. ( C ^ 2 ) ) ) + -u ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) |
158 |
71 81
|
negsubi |
|- ( ( T x. ( T x. ( C ^ 2 ) ) ) + -u ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) = ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) |
159 |
98 157 158
|
3eqtri |
|- ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) = ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) |
160 |
159
|
oveq2i |
|- ( ( D ^ 2 ) + ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) ) = ( ( D ^ 2 ) + ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) |
161 |
25 26
|
addcli |
|- ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) e. CC |
162 |
161 12
|
addcomi |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) + ( D ^ 2 ) ) = ( ( D ^ 2 ) + ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) ) |
163 |
12 71 81
|
addsubassi |
|- ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) = ( ( D ^ 2 ) + ( ( T x. ( T x. ( C ^ 2 ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) |
164 |
160 162 163
|
3eqtr4i |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( T x. C ) ^ 2 ) ) + ( D ^ 2 ) ) = ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) |
165 |
97 164
|
eqtr3i |
|- ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) |
166 |
82 81
|
subcli |
|- ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) e. CC |
167 |
28 166
|
subeq0i |
|- ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) = 0 <-> ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) |
168 |
165 167
|
mpbir |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) - ( ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) - ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) ) ) = 0 |
169 |
96 168
|
eqtr3i |
|- ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) = 0 |
170 |
2 3 4
|
mulassi |
|- ( ( T x. C ) x. D ) = ( T x. ( C x. D ) ) |
171 |
170
|
oveq2i |
|- ( 2 x. ( ( T x. C ) x. D ) ) = ( 2 x. ( T x. ( C x. D ) ) ) |
172 |
8 2 9
|
mul12i |
|- ( 2 x. ( T x. ( C x. D ) ) ) = ( T x. ( 2 x. ( C x. D ) ) ) |
173 |
171 172
|
eqtri |
|- ( 2 x. ( ( T x. C ) x. D ) ) = ( T x. ( 2 x. ( C x. D ) ) ) |
174 |
173
|
oveq2i |
|- ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) = ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) |
175 |
2 10
|
mulcli |
|- ( T x. ( 2 x. ( C x. D ) ) ) e. CC |
176 |
31 32 175
|
addsubi |
|- ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
177 |
174 176
|
eqtri |
|- ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
178 |
169 177
|
oveq12i |
|- ( ( ( ( ( ( ( 1 - T ) x. A ) ^ 2 ) + ( 2 x. ( ( ( 1 - T ) x. A ) x. ( ( T x. C ) - D ) ) ) ) + ( ( ( T x. C ) ^ 2 ) + ( D ^ 2 ) ) ) + ( ( ( 1 - T ) x. ( ( T x. ( ( A ^ 2 ) - ( 2 x. ( A x. C ) ) ) ) - ( ( A ^ 2 ) - ( 2 x. ( A x. D ) ) ) ) ) - ( ( D ^ 2 ) + ( T x. ( T x. ( C ^ 2 ) ) ) ) ) ) + ( ( ( T x. ( C ^ 2 ) ) + ( T x. ( D ^ 2 ) ) ) - ( 2 x. ( ( T x. C ) x. D ) ) ) ) = ( 0 + ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) ) |
179 |
31 175
|
subcli |
|- ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) e. CC |
180 |
179 32
|
addcli |
|- ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) e. CC |
181 |
180
|
addid2i |
|- ( 0 + ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
182 |
94 178 181
|
3eqtri |
|- ( ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) ) = ( ( ( T x. ( C ^ 2 ) ) - ( T x. ( 2 x. ( C x. D ) ) ) ) + ( T x. ( D ^ 2 ) ) ) |
183 |
16 182
|
eqtr4i |
|- ( T x. ( ( C - D ) ^ 2 ) ) = ( ( ( ( ( ( 1 - T ) x. A ) + ( T x. C ) ) - D ) ^ 2 ) + ( ( 1 - T ) x. ( ( T x. ( ( A - C ) ^ 2 ) ) - ( ( A - D ) ^ 2 ) ) ) ) |