Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
3 |
2
|
simp1bi |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
4 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
5 |
1 3 4
|
sylancr |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. RR ) |
6 |
5
|
ad2antrr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> ( 1 - T ) e. RR ) |
7 |
6
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 - T ) e. RR ) |
8 |
|
fzfid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( 1 ... N ) e. Fin ) |
9 |
|
ax5seglem3a |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) e. RR /\ ( ( D ` j ) - ( F ` j ) ) e. RR ) ) |
10 |
9
|
simpld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( C ` j ) ) e. RR ) |
11 |
10
|
resqcld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. RR ) |
12 |
8 11
|
fsumrecl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. RR ) |
13 |
10
|
sqge0d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> 0 <_ ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) |
14 |
8 11 13
|
fsumge0 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> 0 <_ sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) |
15 |
12 14
|
resqrtcld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) e. RR ) |
16 |
15
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) e. RR ) |
17 |
7 16
|
remulcld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) e. RR ) |
18 |
|
elicc01 |
|- ( S e. ( 0 [,] 1 ) <-> ( S e. RR /\ 0 <_ S /\ S <_ 1 ) ) |
19 |
18
|
simp1bi |
|- ( S e. ( 0 [,] 1 ) -> S e. RR ) |
20 |
|
resubcl |
|- ( ( 1 e. RR /\ S e. RR ) -> ( 1 - S ) e. RR ) |
21 |
1 19 20
|
sylancr |
|- ( S e. ( 0 [,] 1 ) -> ( 1 - S ) e. RR ) |
22 |
21
|
ad2antlr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> ( 1 - S ) e. RR ) |
23 |
22
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 - S ) e. RR ) |
24 |
9
|
simprd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( D ` j ) - ( F ` j ) ) e. RR ) |
25 |
24
|
resqcld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) e. RR ) |
26 |
8 25
|
fsumrecl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) e. RR ) |
27 |
24
|
sqge0d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> 0 <_ ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
28 |
8 25 27
|
fsumge0 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> 0 <_ sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
29 |
26 28
|
resqrtcld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) e. RR ) |
30 |
29
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) e. RR ) |
31 |
23 30
|
remulcld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) e. RR ) |
32 |
2
|
simp3bi |
|- ( T e. ( 0 [,] 1 ) -> T <_ 1 ) |
33 |
|
subge0 |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 0 <_ ( 1 - T ) <-> T <_ 1 ) ) |
34 |
1 3 33
|
sylancr |
|- ( T e. ( 0 [,] 1 ) -> ( 0 <_ ( 1 - T ) <-> T <_ 1 ) ) |
35 |
32 34
|
mpbird |
|- ( T e. ( 0 [,] 1 ) -> 0 <_ ( 1 - T ) ) |
36 |
35
|
ad2antrr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> 0 <_ ( 1 - T ) ) |
37 |
36
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( 1 - T ) ) |
38 |
12 14
|
sqrtge0d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> 0 <_ ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
39 |
38
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
40 |
7 16 37 39
|
mulge0d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) |
41 |
18
|
simp3bi |
|- ( S e. ( 0 [,] 1 ) -> S <_ 1 ) |
42 |
|
subge0 |
|- ( ( 1 e. RR /\ S e. RR ) -> ( 0 <_ ( 1 - S ) <-> S <_ 1 ) ) |
43 |
1 19 42
|
sylancr |
|- ( S e. ( 0 [,] 1 ) -> ( 0 <_ ( 1 - S ) <-> S <_ 1 ) ) |
44 |
41 43
|
mpbird |
|- ( S e. ( 0 [,] 1 ) -> 0 <_ ( 1 - S ) ) |
45 |
44
|
ad2antlr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> 0 <_ ( 1 - S ) ) |
46 |
45
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( 1 - S ) ) |
47 |
26 28
|
sqrtge0d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> 0 <_ ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
48 |
47
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
49 |
23 30 46 48
|
mulge0d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
50 |
|
resqrtth |
|- ( ( sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. RR /\ 0 <_ sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) |
51 |
12 14 50
|
syl2anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) |
52 |
51
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) |
53 |
52
|
oveq2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) ) = ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
54 |
|
ax-1cn |
|- 1 e. CC |
55 |
3
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> T e. CC ) |
56 |
55
|
ad2antrr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> T e. CC ) |
57 |
56
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T e. CC ) |
58 |
|
subcl |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
59 |
54 57 58
|
sylancr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 - T ) e. CC ) |
60 |
15
|
recnd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) e. CC ) |
61 |
60
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) e. CC ) |
62 |
59 61
|
sqmuld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) ) ) |
63 |
|
resqrtth |
|- ( ( sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) e. RR /\ 0 <_ sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
64 |
26 28 63
|
syl2anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
65 |
64
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |
66 |
65
|
oveq2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - S ) ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) ) = ( ( ( 1 - S ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
67 |
19
|
recnd |
|- ( S e. ( 0 [,] 1 ) -> S e. CC ) |
68 |
67
|
ad2antlr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> S e. CC ) |
69 |
68
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> S e. CC ) |
70 |
|
subcl |
|- ( ( 1 e. CC /\ S e. CC ) -> ( 1 - S ) e. CC ) |
71 |
54 69 70
|
sylancr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 - S ) e. CC ) |
72 |
29
|
recnd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) e. CC ) |
73 |
72
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) e. CC ) |
74 |
71 73
|
sqmuld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( ( 1 - S ) ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) ) ) |
75 |
|
simp3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. B , C >. Cgr <. E , F >. ) |
76 |
|
simp122 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> B e. ( EE ` N ) ) |
77 |
|
simp123 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> C e. ( EE ` N ) ) |
78 |
|
simp132 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> E e. ( EE ` N ) ) |
79 |
|
simp133 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> F e. ( EE ` N ) ) |
80 |
|
brcgr |
|- ( ( ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( E ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
81 |
76 77 78 79 80
|
syl22anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( <. B , C >. Cgr <. E , F >. <-> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( E ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
82 |
75 81
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( E ` j ) - ( F ` j ) ) ^ 2 ) ) |
83 |
|
simp11 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> N e. NN ) |
84 |
|
simp121 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A e. ( EE ` N ) ) |
85 |
|
simp2ll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T e. ( 0 [,] 1 ) ) |
86 |
|
simp2rl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) |
87 |
|
ax5seglem2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
88 |
83 84 77 85 86 87
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
89 |
|
simp131 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> D e. ( EE ` N ) ) |
90 |
|
simp2lr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> S e. ( 0 [,] 1 ) ) |
91 |
|
simp2rr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) |
92 |
|
ax5seglem2 |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( S e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( E ` j ) - ( F ` j ) ) ^ 2 ) = ( ( ( 1 - S ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
93 |
83 89 79 90 91 92
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( E ` j ) - ( F ` j ) ) ^ 2 ) = ( ( ( 1 - S ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
94 |
82 88 93
|
3eqtr3d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( ( 1 - S ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
95 |
66 74 94
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
96 |
53 62 95
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ^ 2 ) ) |
97 |
17 31 40 49 96
|
sq11d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
98 |
3
|
ad2antrr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> T e. RR ) |
99 |
98
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> T e. RR ) |
100 |
99 16
|
remulcld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) e. RR ) |
101 |
19
|
ad2antlr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> S e. RR ) |
102 |
101
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> S e. RR ) |
103 |
102 30
|
remulcld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) e. RR ) |
104 |
2
|
simp2bi |
|- ( T e. ( 0 [,] 1 ) -> 0 <_ T ) |
105 |
104
|
ad2antrr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> 0 <_ T ) |
106 |
105
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ T ) |
107 |
99 16 106 39
|
mulge0d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) |
108 |
18
|
simp2bi |
|- ( S e. ( 0 [,] 1 ) -> 0 <_ S ) |
109 |
108
|
ad2antlr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> 0 <_ S ) |
110 |
109
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ S ) |
111 |
102 30 110 48
|
mulge0d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> 0 <_ ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
112 |
51
|
oveq2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( T ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
113 |
112
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
114 |
57 61
|
sqmuld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( T ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ^ 2 ) ) ) |
115 |
65
|
oveq2d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( S ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
116 |
69 73
|
sqmuld |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( S ^ 2 ) x. ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ^ 2 ) ) ) |
117 |
|
simp3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) |
118 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) |
119 |
84 76 89 78 118
|
syl22anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( <. A , B >. Cgr <. D , E >. <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) ) |
120 |
117 119
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) ) |
121 |
|
ax5seglem1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
122 |
83 84 77 85 86 121
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( B ` j ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
123 |
|
ax5seglem1 |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( S e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
124 |
83 89 79 90 91 123
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( E ` j ) ) ^ 2 ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
125 |
120 122 124
|
3eqtr3d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( ( S ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
126 |
115 116 125
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( T ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
127 |
113 114 126
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ^ 2 ) = ( ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ^ 2 ) ) |
128 |
100 103 107 111 127
|
sq11d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
129 |
97 128
|
oveq12d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) + ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) = ( ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) + ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) ) |
130 |
59 57 61
|
adddird |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) + T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( ( ( 1 - T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) + ( T x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) ) |
131 |
71 69 73
|
adddird |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - S ) + S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( ( ( 1 - S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) + ( S x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) ) |
132 |
129 130 131
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) + T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( ( ( 1 - S ) + S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
133 |
|
npcan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
134 |
54 55 133
|
sylancr |
|- ( T e. ( 0 [,] 1 ) -> ( ( 1 - T ) + T ) = 1 ) |
135 |
134
|
adantr |
|- ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) + T ) = 1 ) |
136 |
135
|
oveq1d |
|- ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) + T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) |
137 |
136
|
adantr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> ( ( ( 1 - T ) + T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) |
138 |
137
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) + T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) ) |
139 |
60
|
mulid2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
140 |
139
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
141 |
138 140
|
eqtrd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - T ) + T ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |
142 |
|
npcan |
|- ( ( 1 e. CC /\ S e. CC ) -> ( ( 1 - S ) + S ) = 1 ) |
143 |
54 67 142
|
sylancr |
|- ( S e. ( 0 [,] 1 ) -> ( ( 1 - S ) + S ) = 1 ) |
144 |
143
|
oveq1d |
|- ( S e. ( 0 [,] 1 ) -> ( ( ( 1 - S ) + S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
145 |
144
|
ad2antlr |
|- ( ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) -> ( ( ( 1 - S ) + S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
146 |
145
|
3ad2ant2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - S ) + S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) ) |
147 |
72
|
mulid2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
148 |
147
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( 1 x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
149 |
146 148
|
eqtrd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( ( 1 - S ) + S ) x. ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
150 |
132 141 149
|
3eqtr3d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
151 |
|
sqrt11 |
|- ( ( ( sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. RR /\ 0 <_ sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) /\ ( sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) e. RR /\ 0 <_ sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
152 |
12 14 26 28 151
|
syl22anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
153 |
152
|
3ad2ant1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> ( ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = ( sqrt ` sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) ) |
154 |
150 153
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( T e. ( 0 [,] 1 ) /\ S e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - S ) x. ( D ` i ) ) + ( S x. ( F ` i ) ) ) ) ) /\ ( <. A , B >. Cgr <. D , E >. /\ <. B , C >. Cgr <. E , F >. ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( D ` j ) - ( F ` j ) ) ^ 2 ) ) |