| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> A e. ( EE ` N ) ) | 
						
							| 2 |  | fveecn |  |-  ( ( A e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 3 | 1 2 | sylancom |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 4 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> C e. ( EE ` N ) ) | 
						
							| 5 |  | fveecn |  |-  ( ( C e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 6 | 4 5 | sylancom |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 7 |  | elicc01 |  |-  ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) | 
						
							| 8 | 7 | simp1bi |  |-  ( T e. ( 0 [,] 1 ) -> T e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( T e. ( 0 [,] 1 ) -> T e. CC ) | 
						
							| 10 | 9 | adantr |  |-  ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> T e. CC ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> T e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> T e. CC ) | 
						
							| 13 |  | fveq2 |  |-  ( i = j -> ( B ` i ) = ( B ` j ) ) | 
						
							| 14 |  | fveq2 |  |-  ( i = j -> ( A ` i ) = ( A ` j ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( i = j -> ( ( 1 - T ) x. ( A ` i ) ) = ( ( 1 - T ) x. ( A ` j ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( i = j -> ( C ` i ) = ( C ` j ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( i = j -> ( T x. ( C ` i ) ) = ( T x. ( C ` j ) ) ) | 
						
							| 18 | 15 17 | oveq12d |  |-  ( i = j -> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 19 | 13 18 | eqeq12d |  |-  ( i = j -> ( ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) <-> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) ) | 
						
							| 20 | 19 | rspccva |  |-  ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 21 | 20 | adantll |  |-  ( ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 22 | 21 | 3ad2antl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) | 
						
							| 23 |  | oveq1 |  |-  ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( B ` j ) - ( C ` j ) ) = ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( C ` j ) ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) -> ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( C ` j ) ) ^ 2 ) ) | 
						
							| 25 |  | ax-1cn |  |-  1 e. CC | 
						
							| 26 |  | subcl |  |-  ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) | 
						
							| 27 | 25 26 | mpan |  |-  ( T e. CC -> ( 1 - T ) e. CC ) | 
						
							| 28 | 27 | 3ad2ant3 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) | 
						
							| 29 |  | simp1 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( A ` j ) e. CC ) | 
						
							| 30 | 28 29 | mulcld |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 - T ) x. ( A ` j ) ) e. CC ) | 
						
							| 31 |  | simp3 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> T e. CC ) | 
						
							| 32 |  | simp2 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( C ` j ) e. CC ) | 
						
							| 33 | 31 32 | mulcld |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( T x. ( C ` j ) ) e. CC ) | 
						
							| 34 | 30 33 32 | addsubassd |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( C ` j ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( ( T x. ( C ` j ) ) - ( C ` j ) ) ) ) | 
						
							| 35 |  | subdi |  |-  ( ( ( 1 - T ) e. CC /\ ( A ` j ) e. CC /\ ( C ` j ) e. CC ) -> ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) - ( ( 1 - T ) x. ( C ` j ) ) ) ) | 
						
							| 36 | 27 35 | syl3an1 |  |-  ( ( T e. CC /\ ( A ` j ) e. CC /\ ( C ` j ) e. CC ) -> ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) - ( ( 1 - T ) x. ( C ` j ) ) ) ) | 
						
							| 37 | 36 | 3coml |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) - ( ( 1 - T ) x. ( C ` j ) ) ) ) | 
						
							| 38 |  | subdir |  |-  ( ( 1 e. CC /\ T e. CC /\ ( C ` j ) e. CC ) -> ( ( 1 - T ) x. ( C ` j ) ) = ( ( 1 x. ( C ` j ) ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 39 | 25 38 | mp3an1 |  |-  ( ( T e. CC /\ ( C ` j ) e. CC ) -> ( ( 1 - T ) x. ( C ` j ) ) = ( ( 1 x. ( C ` j ) ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 40 | 39 | ancoms |  |-  ( ( ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 - T ) x. ( C ` j ) ) = ( ( 1 x. ( C ` j ) ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 41 | 40 | 3adant1 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 - T ) x. ( C ` j ) ) = ( ( 1 x. ( C ` j ) ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 42 |  | mullid |  |-  ( ( C ` j ) e. CC -> ( 1 x. ( C ` j ) ) = ( C ` j ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( C ` j ) e. CC -> ( ( 1 x. ( C ` j ) ) - ( T x. ( C ` j ) ) ) = ( ( C ` j ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 44 | 43 | 3ad2ant2 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 x. ( C ` j ) ) - ( T x. ( C ` j ) ) ) = ( ( C ` j ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 45 | 41 44 | eqtrd |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 - T ) x. ( C ` j ) ) = ( ( C ` j ) - ( T x. ( C ` j ) ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) x. ( A ` j ) ) - ( ( 1 - T ) x. ( C ` j ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) - ( ( C ` j ) - ( T x. ( C ` j ) ) ) ) ) | 
						
							| 47 | 30 32 33 | subsub2d |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) x. ( A ` j ) ) - ( ( C ` j ) - ( T x. ( C ` j ) ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( ( T x. ( C ` j ) ) - ( C ` j ) ) ) ) | 
						
							| 48 | 37 46 47 | 3eqtrd |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( ( T x. ( C ` j ) ) - ( C ` j ) ) ) ) | 
						
							| 49 | 34 48 | eqtr4d |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( C ` j ) ) = ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) ) | 
						
							| 50 | 49 | oveq1d |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) ^ 2 ) ) | 
						
							| 51 |  | subcl |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) | 
						
							| 52 | 51 | 3adant3 |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) | 
						
							| 53 | 28 52 | sqmuld |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) x. ( ( A ` j ) - ( C ` j ) ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 54 | 50 53 | eqtrd |  |-  ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) -> ( ( ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 55 | 24 54 | sylan9eqr |  |-  ( ( ( ( A ` j ) e. CC /\ ( C ` j ) e. CC /\ T e. CC ) /\ ( B ` j ) = ( ( ( 1 - T ) x. ( A ` j ) ) + ( T x. ( C ` j ) ) ) ) -> ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 56 | 3 6 12 22 55 | syl31anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 57 | 56 | sumeq2dv |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = sum_ j e. ( 1 ... N ) ( ( ( 1 - T ) ^ 2 ) x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 58 |  | fzfid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 59 |  | 1re |  |-  1 e. RR | 
						
							| 60 |  | resubcl |  |-  ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) | 
						
							| 61 | 59 8 60 | sylancr |  |-  ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. RR ) | 
						
							| 62 | 61 | resqcld |  |-  ( T e. ( 0 [,] 1 ) -> ( ( 1 - T ) ^ 2 ) e. RR ) | 
						
							| 63 | 62 | recnd |  |-  ( T e. ( 0 [,] 1 ) -> ( ( 1 - T ) ^ 2 ) e. CC ) | 
						
							| 64 | 63 | adantr |  |-  ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> ( ( 1 - T ) ^ 2 ) e. CC ) | 
						
							| 65 | 64 | 3ad2ant3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( 1 - T ) ^ 2 ) e. CC ) | 
						
							| 66 | 2 | 3adant1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 67 | 66 | 3adant2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ j e. ( 1 ... N ) ) -> ( A ` j ) e. CC ) | 
						
							| 68 | 5 | 3adant1 |  |-  ( ( N e. NN /\ C e. ( EE ` N ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 69 | 68 | 3adant2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ j e. ( 1 ... N ) ) -> ( C ` j ) e. CC ) | 
						
							| 70 | 67 69 | subcld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ j e. ( 1 ... N ) ) -> ( ( A ` j ) - ( C ` j ) ) e. CC ) | 
						
							| 71 | 70 | sqcld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) | 
						
							| 72 | 71 | 3expa |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) | 
						
							| 73 | 72 | 3adantl3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) /\ j e. ( 1 ... N ) ) -> ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) e. CC ) | 
						
							| 74 | 58 65 73 | fsummulc2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) = sum_ j e. ( 1 ... N ) ( ( ( 1 - T ) ^ 2 ) x. ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) | 
						
							| 75 | 57 74 | eqtr4d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( B ` j ) - ( C ` j ) ) ^ 2 ) = ( ( ( 1 - T ) ^ 2 ) x. sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) ) ) |