Metamath Proof Explorer


Theorem ax5seglem2

Description: Lemma for ax5seg . Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion ax5seglem2 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N B j C j 2 = 1 T 2 j = 1 N A j C j 2

Proof

Step Hyp Ref Expression
1 simpl2l N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A 𝔼 N
2 fveecn A 𝔼 N j 1 N A j
3 1 2 sylancom N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j
4 simpl2r N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C 𝔼 N
5 fveecn C 𝔼 N j 1 N C j
6 4 5 sylancom N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N C j
7 elicc01 T 0 1 T 0 T T 1
8 7 simp1bi T 0 1 T
9 8 recnd T 0 1 T
10 9 adantr T 0 1 i 1 N B i = 1 T A i + T C i T
11 10 3ad2ant3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i T
12 11 adantr N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N T
13 fveq2 i = j B i = B j
14 fveq2 i = j A i = A j
15 14 oveq2d i = j 1 T A i = 1 T A j
16 fveq2 i = j C i = C j
17 16 oveq2d i = j T C i = T C j
18 15 17 oveq12d i = j 1 T A i + T C i = 1 T A j + T C j
19 13 18 eqeq12d i = j B i = 1 T A i + T C i B j = 1 T A j + T C j
20 19 rspccva i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
21 20 adantll T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
22 21 3ad2antl3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j = 1 T A j + T C j
23 oveq1 B j = 1 T A j + T C j B j C j = 1 T A j + T C j - C j
24 23 oveq1d B j = 1 T A j + T C j B j C j 2 = 1 T A j + T C j - C j 2
25 ax-1cn 1
26 subcl 1 T 1 T
27 25 26 mpan T 1 T
28 27 3ad2ant3 A j C j T 1 T
29 simp1 A j C j T A j
30 28 29 mulcld A j C j T 1 T A j
31 simp3 A j C j T T
32 simp2 A j C j T C j
33 31 32 mulcld A j C j T T C j
34 30 33 32 addsubassd A j C j T 1 T A j + T C j - C j = 1 T A j + T C j - C j
35 subdi 1 T A j C j 1 T A j C j = 1 T A j 1 T C j
36 27 35 syl3an1 T A j C j 1 T A j C j = 1 T A j 1 T C j
37 36 3coml A j C j T 1 T A j C j = 1 T A j 1 T C j
38 subdir 1 T C j 1 T C j = 1 C j T C j
39 25 38 mp3an1 T C j 1 T C j = 1 C j T C j
40 39 ancoms C j T 1 T C j = 1 C j T C j
41 40 3adant1 A j C j T 1 T C j = 1 C j T C j
42 mulid2 C j 1 C j = C j
43 42 oveq1d C j 1 C j T C j = C j T C j
44 43 3ad2ant2 A j C j T 1 C j T C j = C j T C j
45 41 44 eqtrd A j C j T 1 T C j = C j T C j
46 45 oveq2d A j C j T 1 T A j 1 T C j = 1 T A j C j T C j
47 30 32 33 subsub2d A j C j T 1 T A j C j T C j = 1 T A j + T C j - C j
48 37 46 47 3eqtrd A j C j T 1 T A j C j = 1 T A j + T C j - C j
49 34 48 eqtr4d A j C j T 1 T A j + T C j - C j = 1 T A j C j
50 49 oveq1d A j C j T 1 T A j + T C j - C j 2 = 1 T A j C j 2
51 subcl A j C j A j C j
52 51 3adant3 A j C j T A j C j
53 28 52 sqmuld A j C j T 1 T A j C j 2 = 1 T 2 A j C j 2
54 50 53 eqtrd A j C j T 1 T A j + T C j - C j 2 = 1 T 2 A j C j 2
55 24 54 sylan9eqr A j C j T B j = 1 T A j + T C j B j C j 2 = 1 T 2 A j C j 2
56 3 6 12 22 55 syl31anc N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N B j C j 2 = 1 T 2 A j C j 2
57 56 sumeq2dv N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N B j C j 2 = j = 1 N 1 T 2 A j C j 2
58 fzfid N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 N Fin
59 1re 1
60 resubcl 1 T 1 T
61 59 8 60 sylancr T 0 1 1 T
62 61 resqcld T 0 1 1 T 2
63 62 recnd T 0 1 1 T 2
64 63 adantr T 0 1 i 1 N B i = 1 T A i + T C i 1 T 2
65 64 3ad2ant3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 T 2
66 2 3adant1 N A 𝔼 N j 1 N A j
67 66 3adant2r N A 𝔼 N C 𝔼 N j 1 N A j
68 5 3adant1 N C 𝔼 N j 1 N C j
69 68 3adant2l N A 𝔼 N C 𝔼 N j 1 N C j
70 67 69 subcld N A 𝔼 N C 𝔼 N j 1 N A j C j
71 70 sqcld N A 𝔼 N C 𝔼 N j 1 N A j C j 2
72 71 3expa N A 𝔼 N C 𝔼 N j 1 N A j C j 2
73 72 3adantl3 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j 1 N A j C j 2
74 58 65 73 fsummulc2 N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i 1 T 2 j = 1 N A j C j 2 = j = 1 N 1 T 2 A j C j 2
75 57 74 eqtr4d N A 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N B j C j 2 = 1 T 2 j = 1 N A j C j 2