Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2l |
|
2 |
|
fveecn |
|
3 |
1 2
|
sylancom |
|
4 |
|
simpl2r |
|
5 |
|
fveecn |
|
6 |
4 5
|
sylancom |
|
7 |
|
elicc01 |
|
8 |
7
|
simp1bi |
|
9 |
8
|
recnd |
|
10 |
9
|
adantr |
|
11 |
10
|
3ad2ant3 |
|
12 |
11
|
adantr |
|
13 |
|
fveq2 |
|
14 |
|
fveq2 |
|
15 |
14
|
oveq2d |
|
16 |
|
fveq2 |
|
17 |
16
|
oveq2d |
|
18 |
15 17
|
oveq12d |
|
19 |
13 18
|
eqeq12d |
|
20 |
19
|
rspccva |
|
21 |
20
|
adantll |
|
22 |
21
|
3ad2antl3 |
|
23 |
|
oveq1 |
|
24 |
23
|
oveq1d |
|
25 |
|
ax-1cn |
|
26 |
|
subcl |
|
27 |
25 26
|
mpan |
|
28 |
27
|
3ad2ant3 |
|
29 |
|
simp1 |
|
30 |
28 29
|
mulcld |
|
31 |
|
simp3 |
|
32 |
|
simp2 |
|
33 |
31 32
|
mulcld |
|
34 |
30 33 32
|
addsubassd |
|
35 |
|
subdi |
|
36 |
27 35
|
syl3an1 |
|
37 |
36
|
3coml |
|
38 |
|
subdir |
|
39 |
25 38
|
mp3an1 |
|
40 |
39
|
ancoms |
|
41 |
40
|
3adant1 |
|
42 |
|
mulid2 |
|
43 |
42
|
oveq1d |
|
44 |
43
|
3ad2ant2 |
|
45 |
41 44
|
eqtrd |
|
46 |
45
|
oveq2d |
|
47 |
30 32 33
|
subsub2d |
|
48 |
37 46 47
|
3eqtrd |
|
49 |
34 48
|
eqtr4d |
|
50 |
49
|
oveq1d |
|
51 |
|
subcl |
|
52 |
51
|
3adant3 |
|
53 |
28 52
|
sqmuld |
|
54 |
50 53
|
eqtrd |
|
55 |
24 54
|
sylan9eqr |
|
56 |
3 6 12 22 55
|
syl31anc |
|
57 |
56
|
sumeq2dv |
|
58 |
|
fzfid |
|
59 |
|
1re |
|
60 |
|
resubcl |
|
61 |
59 8 60
|
sylancr |
|
62 |
61
|
resqcld |
|
63 |
62
|
recnd |
|
64 |
63
|
adantr |
|
65 |
64
|
3ad2ant3 |
|
66 |
2
|
3adant1 |
|
67 |
66
|
3adant2r |
|
68 |
5
|
3adant1 |
|
69 |
68
|
3adant2l |
|
70 |
67 69
|
subcld |
|
71 |
70
|
sqcld |
|
72 |
71
|
3expa |
|
73 |
72
|
3adantl3 |
|
74 |
58 65 73
|
fsummulc2 |
|
75 |
57 74
|
eqtr4d |
|