Database
ELEMENTARY GEOMETRY
Geometry in Hilbert spaces
Geometry in Euclidean spaces
Tarski's axioms for geometry for the Euclidean space
ax5seglem3a
Next ⟩
ax5seglem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ax5seglem3a
Description:
Lemma for
ax5seg
.
(Contributed by
Scott Fenton
, 7-May-2015)
Ref
Expression
Assertion
ax5seglem3a
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
A
⁡
j
−
C
⁡
j
∈
ℝ
∧
D
⁡
j
−
F
⁡
j
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
simpl21
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
A
∈
𝔼
⁡
N
2
fveere
⊢
A
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
A
⁡
j
∈
ℝ
3
1
2
sylancom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
A
⁡
j
∈
ℝ
4
simpl23
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
C
∈
𝔼
⁡
N
5
fveere
⊢
C
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
C
⁡
j
∈
ℝ
6
4
5
sylancom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
C
⁡
j
∈
ℝ
7
3
6
resubcld
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
A
⁡
j
−
C
⁡
j
∈
ℝ
8
simpl31
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
D
∈
𝔼
⁡
N
9
fveere
⊢
D
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
D
⁡
j
∈
ℝ
10
8
9
sylancom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
D
⁡
j
∈
ℝ
11
simpl33
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
F
∈
𝔼
⁡
N
12
fveere
⊢
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
F
⁡
j
∈
ℝ
13
11
12
sylancom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
F
⁡
j
∈
ℝ
14
10
13
resubcld
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
D
⁡
j
−
F
⁡
j
∈
ℝ
15
7
14
jca
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
j
∈
1
…
N
→
A
⁡
j
−
C
⁡
j
∈
ℝ
∧
D
⁡
j
−
F
⁡
j
∈
ℝ