Metamath Proof Explorer


Theorem ax5seglem3a

Description: Lemma for ax5seg . (Contributed by Scott Fenton, 7-May-2015)

Ref Expression
Assertion ax5seglem3a NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NAjCjDjFj

Proof

Step Hyp Ref Expression
1 simpl21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NA𝔼N
2 fveere A𝔼Nj1NAj
3 1 2 sylancom NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NAj
4 simpl23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NC𝔼N
5 fveere C𝔼Nj1NCj
6 4 5 sylancom NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NCj
7 3 6 resubcld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NAjCj
8 simpl31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1ND𝔼N
9 fveere D𝔼Nj1NDj
10 8 9 sylancom NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NDj
11 simpl33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NF𝔼N
12 fveere F𝔼Nj1NFj
13 11 12 sylancom NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NFj
14 10 13 resubcld NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NDjFj
15 7 14 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼Nj1NAjCjDjFj