Metamath Proof Explorer


Theorem ax5seglem5

Description: Lemma for ax5seg . If B is between A and C , and A is distinct from B , then A is distinct from C . (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion ax5seglem5 N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N A j C j 2 0

Proof

Step Hyp Ref Expression
1 fveq1 A = C A i = C i
2 1 oveq2d A = C T A i = T C i
3 2 oveq2d A = C 1 T A i + T A i = 1 T A i + T C i
4 3 eqeq2d A = C B i = 1 T A i + T A i B i = 1 T A i + T C i
5 4 ralbidv A = C i 1 N B i = 1 T A i + T A i i 1 N B i = 1 T A i + T C i
6 5 biimparc i 1 N B i = 1 T A i + T C i A = C i 1 N B i = 1 T A i + T A i
7 simplr1 N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 A 𝔼 N
8 simplr2 N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 B 𝔼 N
9 eqeefv A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
10 7 8 9 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 A = B i 1 N A i = B i
11 fveecn A 𝔼 N i 1 N A i
12 7 11 sylan N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N A i
13 elicc01 T 0 1 T 0 T T 1
14 13 simp1bi T 0 1 T
15 14 recnd T 0 1 T
16 15 ad2antlr N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N T
17 ax-1cn 1
18 npcan 1 T 1 - T + T = 1
19 17 18 mpan T 1 - T + T = 1
20 19 oveq1d T 1 - T + T A i = 1 A i
21 mulid2 A i 1 A i = A i
22 20 21 sylan9eqr A i T 1 - T + T A i = A i
23 subcl 1 T 1 T
24 17 23 mpan T 1 T
25 24 adantl A i T 1 T
26 simpr A i T T
27 simpl A i T A i
28 25 26 27 adddird A i T 1 - T + T A i = 1 T A i + T A i
29 22 28 eqtr3d A i T A i = 1 T A i + T A i
30 29 eqeq1d A i T A i = B i 1 T A i + T A i = B i
31 12 16 30 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N A i = B i 1 T A i + T A i = B i
32 eqcom 1 T A i + T A i = B i B i = 1 T A i + T A i
33 31 32 bitrdi N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N A i = B i B i = 1 T A i + T A i
34 33 ralbidva N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N A i = B i i 1 N B i = 1 T A i + T A i
35 10 34 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 A = B i 1 N B i = 1 T A i + T A i
36 6 35 syl5ibr N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i A = C A = B
37 36 expd N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i A = C A = B
38 37 impr N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i A = C A = B
39 38 necon3d N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i A B A C
40 39 ex N A 𝔼 N B 𝔼 N C 𝔼 N T 0 1 i 1 N B i = 1 T A i + T C i A B A C
41 40 com23 N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i A C
42 41 exp4a N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i A C
43 42 3imp2 N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i A C
44 simplr1 N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i A 𝔼 N
45 simplr3 N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i C 𝔼 N
46 eqeelen A 𝔼 N C 𝔼 N A = C j = 1 N A j C j 2 = 0
47 44 45 46 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i A = C j = 1 N A j C j 2 = 0
48 47 necon3bid N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i A C j = 1 N A j C j 2 0
49 43 48 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N A B T 0 1 i 1 N B i = 1 T A i + T C i j = 1 N A j C j 2 0