| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 |  | 
						
							| 2 | 1 | oveq2d |  | 
						
							| 3 | 2 | oveq2d |  | 
						
							| 4 | 3 | eqeq2d |  | 
						
							| 5 | 4 | ralbidv |  | 
						
							| 6 | 5 | biimparc |  | 
						
							| 7 |  | simplr1 |  | 
						
							| 8 |  | simplr2 |  | 
						
							| 9 |  | eqeefv |  | 
						
							| 10 | 7 8 9 | syl2anc |  | 
						
							| 11 |  | fveecn |  | 
						
							| 12 | 7 11 | sylan |  | 
						
							| 13 |  | elicc01 |  | 
						
							| 14 | 13 | simp1bi |  | 
						
							| 15 | 14 | recnd |  | 
						
							| 16 | 15 | ad2antlr |  | 
						
							| 17 |  | ax-1cn |  | 
						
							| 18 |  | npcan |  | 
						
							| 19 | 17 18 | mpan |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 |  | mullid |  | 
						
							| 22 | 20 21 | sylan9eqr |  | 
						
							| 23 |  | subcl |  | 
						
							| 24 | 17 23 | mpan |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 |  | simpl |  | 
						
							| 28 | 25 26 27 | adddird |  | 
						
							| 29 | 22 28 | eqtr3d |  | 
						
							| 30 | 29 | eqeq1d |  | 
						
							| 31 | 12 16 30 | syl2anc |  | 
						
							| 32 |  | eqcom |  | 
						
							| 33 | 31 32 | bitrdi |  | 
						
							| 34 | 33 | ralbidva |  | 
						
							| 35 | 10 34 | bitrd |  | 
						
							| 36 | 6 35 | imbitrrid |  | 
						
							| 37 | 36 | expd |  | 
						
							| 38 | 37 | impr |  | 
						
							| 39 | 38 | necon3d |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 40 | com23 |  | 
						
							| 42 | 41 | exp4a |  | 
						
							| 43 | 42 | 3imp2 |  | 
						
							| 44 |  | simplr1 |  | 
						
							| 45 |  | simplr3 |  | 
						
							| 46 |  | eqeelen |  | 
						
							| 47 | 44 45 46 | syl2anc |  | 
						
							| 48 | 47 | necon3bid |  | 
						
							| 49 | 43 48 | mpbid |  |