Metamath Proof Explorer


Theorem ax5seglem4

Description: Lemma for ax5seg . Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion ax5seglem4 N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i = 1 T A i + T C i A B T 0

Proof

Step Hyp Ref Expression
1 oveq2 T = 0 1 T = 1 0
2 1m0e1 1 0 = 1
3 1 2 eqtrdi T = 0 1 T = 1
4 3 oveq1d T = 0 1 T A i = 1 A i
5 oveq1 T = 0 T C i = 0 C i
6 4 5 oveq12d T = 0 1 T A i + T C i = 1 A i + 0 C i
7 6 eqeq2d T = 0 B i = 1 T A i + T C i B i = 1 A i + 0 C i
8 7 ralbidv T = 0 i 1 N B i = 1 T A i + T C i i 1 N B i = 1 A i + 0 C i
9 8 biimpac i 1 N B i = 1 T A i + T C i T = 0 i 1 N B i = 1 A i + 0 C i
10 eqeefv A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
11 10 3adant1 N A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
12 11 3adant3r3 N A 𝔼 N B 𝔼 N C 𝔼 N A = B i 1 N A i = B i
13 simplr1 N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N A 𝔼 N
14 fveecn A 𝔼 N i 1 N A i
15 13 14 sylancom N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N A i
16 simplr3 N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N C 𝔼 N
17 fveecn C 𝔼 N i 1 N C i
18 16 17 sylancom N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N C i
19 mulid2 A i 1 A i = A i
20 mul02 C i 0 C i = 0
21 19 20 oveqan12d A i C i 1 A i + 0 C i = A i + 0
22 addid1 A i A i + 0 = A i
23 22 adantr A i C i A i + 0 = A i
24 21 23 eqtrd A i C i 1 A i + 0 C i = A i
25 15 18 24 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N 1 A i + 0 C i = A i
26 25 eqeq1d N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N 1 A i + 0 C i = B i A i = B i
27 eqcom 1 A i + 0 C i = B i B i = 1 A i + 0 C i
28 26 27 bitr3di N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N A i = B i B i = 1 A i + 0 C i
29 28 ralbidva N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N A i = B i i 1 N B i = 1 A i + 0 C i
30 12 29 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N A = B i 1 N B i = 1 A i + 0 C i
31 9 30 syl5ibr N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i = 1 T A i + T C i T = 0 A = B
32 31 expdimp N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i = 1 T A i + T C i T = 0 A = B
33 32 necon3d N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i = 1 T A i + T C i A B T 0
34 33 3impia N A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i = 1 T A i + T C i A B T 0