| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | 1m0e1 |  | 
						
							| 3 | 1 2 | eqtrdi |  | 
						
							| 4 | 3 | oveq1d |  | 
						
							| 5 |  | oveq1 |  | 
						
							| 6 | 4 5 | oveq12d |  | 
						
							| 7 | 6 | eqeq2d |  | 
						
							| 8 | 7 | ralbidv |  | 
						
							| 9 | 8 | biimpac |  | 
						
							| 10 |  | eqeefv |  | 
						
							| 11 | 10 | 3adant1 |  | 
						
							| 12 | 11 | 3adant3r3 |  | 
						
							| 13 |  | simplr1 |  | 
						
							| 14 |  | fveecn |  | 
						
							| 15 | 13 14 | sylancom |  | 
						
							| 16 |  | simplr3 |  | 
						
							| 17 |  | fveecn |  | 
						
							| 18 | 16 17 | sylancom |  | 
						
							| 19 |  | mullid |  | 
						
							| 20 |  | mul02 |  | 
						
							| 21 | 19 20 | oveqan12d |  | 
						
							| 22 |  | addrid |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 21 23 | eqtrd |  | 
						
							| 25 | 15 18 24 | syl2anc |  | 
						
							| 26 | 25 | eqeq1d |  | 
						
							| 27 |  | eqcom |  | 
						
							| 28 | 26 27 | bitr3di |  | 
						
							| 29 | 28 | ralbidva |  | 
						
							| 30 | 12 29 | bitrd |  | 
						
							| 31 | 9 30 | imbitrrid |  | 
						
							| 32 | 31 | expdimp |  | 
						
							| 33 | 32 | necon3d |  | 
						
							| 34 | 33 | 3impia |  |