Metamath Proof Explorer


Theorem ax5seglem4

Description: Lemma for ax5seg . Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion ax5seglem4 NA𝔼NB𝔼NC𝔼Ni1NBi=1TAi+TCiABT0

Proof

Step Hyp Ref Expression
1 oveq2 T=01T=10
2 1m0e1 10=1
3 1 2 eqtrdi T=01T=1
4 3 oveq1d T=01TAi=1Ai
5 oveq1 T=0TCi=0Ci
6 4 5 oveq12d T=01TAi+TCi=1Ai+0Ci
7 6 eqeq2d T=0Bi=1TAi+TCiBi=1Ai+0Ci
8 7 ralbidv T=0i1NBi=1TAi+TCii1NBi=1Ai+0Ci
9 8 biimpac i1NBi=1TAi+TCiT=0i1NBi=1Ai+0Ci
10 eqeefv A𝔼NB𝔼NA=Bi1NAi=Bi
11 10 3adant1 NA𝔼NB𝔼NA=Bi1NAi=Bi
12 11 3adant3r3 NA𝔼NB𝔼NC𝔼NA=Bi1NAi=Bi
13 simplr1 NA𝔼NB𝔼NC𝔼Ni1NA𝔼N
14 fveecn A𝔼Ni1NAi
15 13 14 sylancom NA𝔼NB𝔼NC𝔼Ni1NAi
16 simplr3 NA𝔼NB𝔼NC𝔼Ni1NC𝔼N
17 fveecn C𝔼Ni1NCi
18 16 17 sylancom NA𝔼NB𝔼NC𝔼Ni1NCi
19 mullid Ai1Ai=Ai
20 mul02 Ci0Ci=0
21 19 20 oveqan12d AiCi1Ai+0Ci=Ai+0
22 addrid AiAi+0=Ai
23 22 adantr AiCiAi+0=Ai
24 21 23 eqtrd AiCi1Ai+0Ci=Ai
25 15 18 24 syl2anc NA𝔼NB𝔼NC𝔼Ni1N1Ai+0Ci=Ai
26 25 eqeq1d NA𝔼NB𝔼NC𝔼Ni1N1Ai+0Ci=BiAi=Bi
27 eqcom 1Ai+0Ci=BiBi=1Ai+0Ci
28 26 27 bitr3di NA𝔼NB𝔼NC𝔼Ni1NAi=BiBi=1Ai+0Ci
29 28 ralbidva NA𝔼NB𝔼NC𝔼Ni1NAi=Bii1NBi=1Ai+0Ci
30 12 29 bitrd NA𝔼NB𝔼NC𝔼NA=Bi1NBi=1Ai+0Ci
31 9 30 imbitrrid NA𝔼NB𝔼NC𝔼Ni1NBi=1TAi+TCiT=0A=B
32 31 expdimp NA𝔼NB𝔼NC𝔼Ni1NBi=1TAi+TCiT=0A=B
33 32 necon3d NA𝔼NB𝔼NC𝔼Ni1NBi=1TAi+TCiABT0
34 33 3impia NA𝔼NB𝔼NC𝔼Ni1NBi=1TAi+TCiABT0