Metamath Proof Explorer


Definition df-ofs

Description: The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom ( ax5seg ). See brofs and 5segofs for how it is used. Definition 2.10 of Schwabhauser p. 28. (Contributed by Scott Fenton, 21-Sep-2013)

Ref Expression
Assertion df-ofs OuterFiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cofs class OuterFiveSeg
1 vp setvar p
2 vq setvar q
3 vn setvar n
4 cn class
5 va setvar a
6 cee class 𝔼
7 3 cv setvar n
8 7 6 cfv class 𝔼 n
9 vb setvar b
10 vc setvar c
11 vd setvar d
12 vx setvar x
13 vy setvar y
14 vz setvar z
15 vw setvar w
16 1 cv setvar p
17 5 cv setvar a
18 9 cv setvar b
19 17 18 cop class a b
20 10 cv setvar c
21 11 cv setvar d
22 20 21 cop class c d
23 19 22 cop class a b c d
24 16 23 wceq wff p = a b c d
25 2 cv setvar q
26 12 cv setvar x
27 13 cv setvar y
28 26 27 cop class x y
29 14 cv setvar z
30 15 cv setvar w
31 29 30 cop class z w
32 28 31 cop class x y z w
33 25 32 wceq wff q = x y z w
34 cbtwn class Btwn
35 17 20 cop class a c
36 18 35 34 wbr wff b Btwn a c
37 26 29 cop class x z
38 27 37 34 wbr wff y Btwn x z
39 36 38 wa wff b Btwn a c y Btwn x z
40 ccgr class Cgr
41 19 28 40 wbr wff a b Cgr x y
42 18 20 cop class b c
43 27 29 cop class y z
44 42 43 40 wbr wff b c Cgr y z
45 41 44 wa wff a b Cgr x y b c Cgr y z
46 17 21 cop class a d
47 26 30 cop class x w
48 46 47 40 wbr wff a d Cgr x w
49 18 21 cop class b d
50 27 30 cop class y w
51 49 50 40 wbr wff b d Cgr y w
52 48 51 wa wff a d Cgr x w b d Cgr y w
53 39 45 52 w3a wff b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
54 24 33 53 w3a wff p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
55 54 15 8 wrex wff w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
56 55 14 8 wrex wff z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
57 56 13 8 wrex wff y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
58 57 12 8 wrex wff x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
59 58 11 8 wrex wff d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
60 59 10 8 wrex wff c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
61 60 9 8 wrex wff b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
62 61 5 8 wrex wff a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
63 62 3 4 wrex wff n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
64 63 1 2 copab class p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w
65 0 64 wceq wff OuterFiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n x 𝔼 n y 𝔼 n z 𝔼 n w 𝔼 n p = a b c d q = x y z w b Btwn a c y Btwn x z a b Cgr x y b c Cgr y z a d Cgr x w b d Cgr y w