| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq1 | ⊢ ( 𝐴  =  𝐵  →  〈 𝐴 ,  𝐵 〉  =  〈 𝐵 ,  𝐵 〉 ) | 
						
							| 2 | 1 | breq1d | ⊢ ( 𝐴  =  𝐵  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ↔  〈 𝐵 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) ) | 
						
							| 3 | 2 | biimpac | ⊢ ( ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ∧  𝐴  =  𝐵 )  →  〈 𝐵 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | simp2r | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 6 |  | simp3l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 7 |  | simp3r | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 |  | cgrid2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐵 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  →  𝐶  =  𝐷 ) ) | 
						
							| 9 | 4 5 6 7 8 | syl13anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐵 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  →  𝐶  =  𝐷 ) ) | 
						
							| 10 | 3 9 | syl5 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ∧  𝐴  =  𝐵 )  →  𝐶  =  𝐷 ) ) | 
						
							| 11 | 10 | expdimp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  →  ( 𝐴  =  𝐵  →  𝐶  =  𝐷 ) ) | 
						
							| 12 |  | opeq1 | ⊢ ( 𝐶  =  𝐷  →  〈 𝐶 ,  𝐷 〉  =  〈 𝐷 ,  𝐷 〉 ) | 
						
							| 13 | 12 | breq2d | ⊢ ( 𝐶  =  𝐷  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ↔  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐷 ,  𝐷 〉 ) ) | 
						
							| 14 | 13 | biimpac | ⊢ ( ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ∧  𝐶  =  𝐷 )  →  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐷 ,  𝐷 〉 ) | 
						
							| 15 |  | simp2l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 16 |  | axcgrid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐷 ,  𝐷 〉  →  𝐴  =  𝐵 ) ) | 
						
							| 17 | 4 15 5 7 16 | syl13anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐷 ,  𝐷 〉  →  𝐴  =  𝐵 ) ) | 
						
							| 18 | 14 17 | syl5 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ∧  𝐶  =  𝐷 )  →  𝐴  =  𝐵 ) ) | 
						
							| 19 | 18 | expdimp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  →  ( 𝐶  =  𝐷  →  𝐴  =  𝐵 ) ) | 
						
							| 20 | 11 19 | impbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  →  ( 𝐴  =  𝐵  ↔  𝐶  =  𝐷 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  →  ( 𝐴  =  𝐵  ↔  𝐶  =  𝐷 ) ) ) |