| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opeq1 |
⊢ ( 𝐴 = 𝐵 → 〈 𝐴 , 𝐵 〉 = 〈 𝐵 , 𝐵 〉 ) |
| 2 |
1
|
breq1d |
⊢ ( 𝐴 = 𝐵 → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ 〈 𝐵 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) |
| 3 |
2
|
biimpac |
⊢ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ∧ 𝐴 = 𝐵 ) → 〈 𝐵 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 5 |
|
simp2r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 6 |
|
simp3l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 7 |
|
simp3r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 8 |
|
cgrid2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 → 𝐶 = 𝐷 ) ) |
| 9 |
4 5 6 7 8
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐵 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 → 𝐶 = 𝐷 ) ) |
| 10 |
3 9
|
syl5 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ∧ 𝐴 = 𝐵 ) → 𝐶 = 𝐷 ) ) |
| 11 |
10
|
expdimp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) → ( 𝐴 = 𝐵 → 𝐶 = 𝐷 ) ) |
| 12 |
|
opeq1 |
⊢ ( 𝐶 = 𝐷 → 〈 𝐶 , 𝐷 〉 = 〈 𝐷 , 𝐷 〉 ) |
| 13 |
12
|
breq2d |
⊢ ( 𝐶 = 𝐷 → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐷 〉 ) ) |
| 14 |
13
|
biimpac |
⊢ ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ∧ 𝐶 = 𝐷 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐷 〉 ) |
| 15 |
|
simp2l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 16 |
|
axcgrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐷 〉 → 𝐴 = 𝐵 ) ) |
| 17 |
4 15 5 7 16
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐷 〉 → 𝐴 = 𝐵 ) ) |
| 18 |
14 17
|
syl5 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ∧ 𝐶 = 𝐷 ) → 𝐴 = 𝐵 ) ) |
| 19 |
18
|
expdimp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) → ( 𝐶 = 𝐷 → 𝐴 = 𝐵 ) ) |
| 20 |
11 19
|
impbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |
| 21 |
20
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) ) |