Metamath Proof Explorer


Theorem chj4

Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chj4
|- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) )

Proof

Step Hyp Ref Expression
1 chj12
 |-  ( ( B e. CH /\ C e. CH /\ D e. CH ) -> ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) )
2 1 3expb
 |-  ( ( B e. CH /\ ( C e. CH /\ D e. CH ) ) -> ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) )
3 2 adantll
 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) )
4 3 oveq2d
 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( A vH ( B vH ( C vH D ) ) ) = ( A vH ( C vH ( B vH D ) ) ) )
5 chjcl
 |-  ( ( C e. CH /\ D e. CH ) -> ( C vH D ) e. CH )
6 chjass
 |-  ( ( A e. CH /\ B e. CH /\ ( C vH D ) e. CH ) -> ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) )
7 6 3expa
 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( C vH D ) e. CH ) -> ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) )
8 5 7 sylan2
 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) )
9 chjcl
 |-  ( ( B e. CH /\ D e. CH ) -> ( B vH D ) e. CH )
10 chjass
 |-  ( ( A e. CH /\ C e. CH /\ ( B vH D ) e. CH ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) )
11 10 3expa
 |-  ( ( ( A e. CH /\ C e. CH ) /\ ( B vH D ) e. CH ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) )
12 9 11 sylan2
 |-  ( ( ( A e. CH /\ C e. CH ) /\ ( B e. CH /\ D e. CH ) ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) )
13 12 an4s
 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) )
14 4 8 13 3eqtr4d
 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) )