Metamath Proof Explorer


Theorem chvar

Description: Implicit substitution of y for x into a theorem. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker chvarfv if possible. (Contributed by Raph Levien, 9-Jul-2003) (Revised by Mario Carneiro, 3-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses chvar.1
|- F/ x ps
chvar.2
|- ( x = y -> ( ph <-> ps ) )
chvar.3
|- ph
Assertion chvar
|- ps

Proof

Step Hyp Ref Expression
1 chvar.1
 |-  F/ x ps
2 chvar.2
 |-  ( x = y -> ( ph <-> ps ) )
3 chvar.3
 |-  ph
4 2 biimpd
 |-  ( x = y -> ( ph -> ps ) )
5 1 4 spim
 |-  ( A. x ph -> ps )
6 5 3 mpg
 |-  ps