Metamath Proof Explorer


Theorem clatp1cl

Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp1cl.b
|- B = ( Base ` W )
clatp1cl.1
|- .1. = ( 1. ` W )
Assertion clatp1cl
|- ( W e. CLat -> .1. e. B )

Proof

Step Hyp Ref Expression
1 clatp1cl.b
 |-  B = ( Base ` W )
2 clatp1cl.1
 |-  .1. = ( 1. ` W )
3 eqid
 |-  ( lub ` W ) = ( lub ` W )
4 1 3 2 p1val
 |-  ( W e. CLat -> .1. = ( ( lub ` W ) ` B ) )
5 ssid
 |-  B C_ B
6 1 3 clatlubcl
 |-  ( ( W e. CLat /\ B C_ B ) -> ( ( lub ` W ) ` B ) e. B )
7 5 6 mpan2
 |-  ( W e. CLat -> ( ( lub ` W ) ` B ) e. B )
8 4 7 eqeltrd
 |-  ( W e. CLat -> .1. e. B )