Metamath Proof Explorer


Theorem clatp1cl

Description: The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp1cl.b 𝐵 = ( Base ‘ 𝑊 )
clatp1cl.1 1 = ( 1. ‘ 𝑊 )
Assertion clatp1cl ( 𝑊 ∈ CLat → 1𝐵 )

Proof

Step Hyp Ref Expression
1 clatp1cl.b 𝐵 = ( Base ‘ 𝑊 )
2 clatp1cl.1 1 = ( 1. ‘ 𝑊 )
3 eqid ( lub ‘ 𝑊 ) = ( lub ‘ 𝑊 )
4 1 3 2 p1val ( 𝑊 ∈ CLat → 1 = ( ( lub ‘ 𝑊 ) ‘ 𝐵 ) )
5 ssid 𝐵𝐵
6 1 3 clatlubcl ( ( 𝑊 ∈ CLat ∧ 𝐵𝐵 ) → ( ( lub ‘ 𝑊 ) ‘ 𝐵 ) ∈ 𝐵 )
7 5 6 mpan2 ( 𝑊 ∈ CLat → ( ( lub ‘ 𝑊 ) ‘ 𝐵 ) ∈ 𝐵 )
8 4 7 eqeltrd ( 𝑊 ∈ CLat → 1𝐵 )