Metamath Proof Explorer


Theorem clelsb2

Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 ). (Contributed by Jim Kingdon, 22-Nov-2018) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024)

Ref Expression
Assertion clelsb2
|- ( [ y / x ] A e. x <-> A e. y )

Proof

Step Hyp Ref Expression
1 eleq2w
 |-  ( x = z -> ( A e. x <-> A e. z ) )
2 eleq2w
 |-  ( z = y -> ( A e. z <-> A e. y ) )
3 1 2 sbievw2
 |-  ( [ y / x ] A e. x <-> A e. y )