Metamath Proof Explorer


Theorem clelsb2OLD

Description: Obsolete version of clelsb2 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion clelsb2OLD
|- ( [ y / x ] A e. x <-> A e. y )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ x A e. w
2 1 sbco2
 |-  ( [ y / x ] [ x / w ] A e. w <-> [ y / w ] A e. w )
3 nfv
 |-  F/ w A e. x
4 eleq2
 |-  ( w = x -> ( A e. w <-> A e. x ) )
5 3 4 sbie
 |-  ( [ x / w ] A e. w <-> A e. x )
6 5 sbbii
 |-  ( [ y / x ] [ x / w ] A e. w <-> [ y / x ] A e. x )
7 nfv
 |-  F/ w A e. y
8 eleq2
 |-  ( w = y -> ( A e. w <-> A e. y ) )
9 7 8 sbie
 |-  ( [ y / w ] A e. w <-> A e. y )
10 2 6 9 3bitr3i
 |-  ( [ y / x ] A e. x <-> A e. y )