Step |
Hyp |
Ref |
Expression |
1 |
|
sbco2.1 |
|- F/ z ph |
2 |
|
sbequ12 |
|- ( z = y -> ( [ z / x ] ph <-> [ y / z ] [ z / x ] ph ) ) |
3 |
|
sbequ |
|- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
4 |
2 3
|
bitr3d |
|- ( z = y -> ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) ) |
5 |
4
|
sps |
|- ( A. z z = y -> ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) ) |
6 |
|
nfnae |
|- F/ z -. A. z z = y |
7 |
1
|
nfsb4 |
|- ( -. A. z z = y -> F/ z [ y / x ] ph ) |
8 |
3
|
a1i |
|- ( -. A. z z = y -> ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) ) |
9 |
6 7 8
|
sbied |
|- ( -. A. z z = y -> ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) ) |
10 |
5 9
|
pm2.61i |
|- ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) |