| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbco2d.1 |  |-  F/ x ph | 
						
							| 2 |  | sbco2d.2 |  |-  F/ z ph | 
						
							| 3 |  | sbco2d.3 |  |-  ( ph -> F/ z ps ) | 
						
							| 4 | 2 3 | nfim1 |  |-  F/ z ( ph -> ps ) | 
						
							| 5 | 4 | sbco2 |  |-  ( [ y / z ] [ z / x ] ( ph -> ps ) <-> [ y / x ] ( ph -> ps ) ) | 
						
							| 6 | 1 | sbrim |  |-  ( [ z / x ] ( ph -> ps ) <-> ( ph -> [ z / x ] ps ) ) | 
						
							| 7 | 6 | sbbii |  |-  ( [ y / z ] [ z / x ] ( ph -> ps ) <-> [ y / z ] ( ph -> [ z / x ] ps ) ) | 
						
							| 8 | 2 | sbrim |  |-  ( [ y / z ] ( ph -> [ z / x ] ps ) <-> ( ph -> [ y / z ] [ z / x ] ps ) ) | 
						
							| 9 | 7 8 | bitri |  |-  ( [ y / z ] [ z / x ] ( ph -> ps ) <-> ( ph -> [ y / z ] [ z / x ] ps ) ) | 
						
							| 10 | 1 | sbrim |  |-  ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) | 
						
							| 11 | 5 9 10 | 3bitr3i |  |-  ( ( ph -> [ y / z ] [ z / x ] ps ) <-> ( ph -> [ y / x ] ps ) ) | 
						
							| 12 | 11 | pm5.74ri |  |-  ( ph -> ( [ y / z ] [ z / x ] ps <-> [ y / x ] ps ) ) |