| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbco2d.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sbco2d.2 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 3 |  | sbco2d.3 | ⊢ ( 𝜑  →  Ⅎ 𝑧 𝜓 ) | 
						
							| 4 | 2 3 | nfim1 | ⊢ Ⅎ 𝑧 ( 𝜑  →  𝜓 ) | 
						
							| 5 | 4 | sbco2 | ⊢ ( [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  [ 𝑦  /  𝑥 ] ( 𝜑  →  𝜓 ) ) | 
						
							| 6 | 1 | sbrim | ⊢ ( [ 𝑧  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  [ 𝑧  /  𝑥 ] 𝜓 ) ) | 
						
							| 7 | 6 | sbbii | ⊢ ( [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  [ 𝑦  /  𝑧 ] ( 𝜑  →  [ 𝑧  /  𝑥 ] 𝜓 ) ) | 
						
							| 8 | 2 | sbrim | ⊢ ( [ 𝑦  /  𝑧 ] ( 𝜑  →  [ 𝑧  /  𝑥 ] 𝜓 )  ↔  ( 𝜑  →  [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] 𝜓 ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] 𝜓 ) ) | 
						
							| 10 | 1 | sbrim | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 11 | 5 9 10 | 3bitr3i | ⊢ ( ( 𝜑  →  [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] 𝜓 )  ↔  ( 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 12 | 11 | pm5.74ri | ⊢ ( 𝜑  →  ( [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] 𝜓  ↔  [ 𝑦  /  𝑥 ] 𝜓 ) ) |