Metamath Proof Explorer


Theorem sbco2d

Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses sbco2d.1 𝑥 𝜑
sbco2d.2 𝑧 𝜑
sbco2d.3 ( 𝜑 → Ⅎ 𝑧 𝜓 )
Assertion sbco2d ( 𝜑 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbco2d.1 𝑥 𝜑
2 sbco2d.2 𝑧 𝜑
3 sbco2d.3 ( 𝜑 → Ⅎ 𝑧 𝜓 )
4 2 3 nfim1 𝑧 ( 𝜑𝜓 )
5 4 sbco2 ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )
6 1 sbrim ( [ 𝑧 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) )
7 6 sbbii ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑𝜓 ) ↔ [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) )
8 2 sbrim ( [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) )
9 7 8 bitri ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) )
10 1 sbrim ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
11 5 9 10 3bitr3i ( ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
12 11 pm5.74ri ( 𝜑 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) )