| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drsb1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑧  /  𝑥 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 2 |  | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 3 |  | sbequ12a | ⊢ ( 𝑥  =  𝑦  →  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 5 | 2 4 | sbbid | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑧  /  𝑥 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 6 | 1 5 | bitr3d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑧  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 7 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 8 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 9 |  | nfsb2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 10 | 7 8 9 | sbco2d | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 11 |  | sbco | ⊢ ( [ 𝑥  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑥  /  𝑦 ] 𝜑 ) | 
						
							| 12 | 11 | sbbii | ⊢ ( [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑 ) | 
						
							| 13 | 10 12 | bitr3di | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( [ 𝑧  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 14 | 6 13 | pm2.61i | ⊢ ( [ 𝑧  /  𝑦 ] [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑 ) |