| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drsb1 |  |-  ( A. x x = y -> ( [ z / x ] [ y / x ] ph <-> [ z / y ] [ y / x ] ph ) ) | 
						
							| 2 |  | nfae |  |-  F/ x A. x x = y | 
						
							| 3 |  | sbequ12a |  |-  ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) | 
						
							| 4 | 3 | sps |  |-  ( A. x x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) | 
						
							| 5 | 2 4 | sbbid |  |-  ( A. x x = y -> ( [ z / x ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) | 
						
							| 6 | 1 5 | bitr3d |  |-  ( A. x x = y -> ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) | 
						
							| 7 |  | nfnae |  |-  F/ y -. A. x x = y | 
						
							| 8 |  | nfnae |  |-  F/ x -. A. x x = y | 
						
							| 9 |  | nfsb2 |  |-  ( -. A. x x = y -> F/ x [ y / x ] ph ) | 
						
							| 10 | 7 8 9 | sbco2d |  |-  ( -. A. x x = y -> ( [ z / x ] [ x / y ] [ y / x ] ph <-> [ z / y ] [ y / x ] ph ) ) | 
						
							| 11 |  | sbco |  |-  ( [ x / y ] [ y / x ] ph <-> [ x / y ] ph ) | 
						
							| 12 | 11 | sbbii |  |-  ( [ z / x ] [ x / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) | 
						
							| 13 | 10 12 | bitr3di |  |-  ( -. A. x x = y -> ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) | 
						
							| 14 | 6 13 | pm2.61i |  |-  ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) |