Metamath Proof Explorer


Theorem sbbid

Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993) Remove dependency on ax-10 and ax-13 . (Revised by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 11-Jul-2023)

Ref Expression
Hypotheses sbbid.1
|- F/ x ph
sbbid.2
|- ( ph -> ( ps <-> ch ) )
Assertion sbbid
|- ( ph -> ( [ y / x ] ps <-> [ y / x ] ch ) )

Proof

Step Hyp Ref Expression
1 sbbid.1
 |-  F/ x ph
2 sbbid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 2 alrimi
 |-  ( ph -> A. x ( ps <-> ch ) )
4 spsbbi
 |-  ( A. x ( ps <-> ch ) -> ( [ y / x ] ps <-> [ y / x ] ch ) )
5 3 4 syl
 |-  ( ph -> ( [ y / x ] ps <-> [ y / x ] ch ) )