Metamath Proof Explorer


Theorem climcn1lem

Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses climcn1lem.1
|- Z = ( ZZ>= ` M )
climcn1lem.2
|- ( ph -> F ~~> A )
climcn1lem.4
|- ( ph -> G e. W )
climcn1lem.5
|- ( ph -> M e. ZZ )
climcn1lem.6
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
climcn1lem.7
|- H : CC --> CC
climcn1lem.8
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) )
climcn1lem.9
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( H ` ( F ` k ) ) )
Assertion climcn1lem
|- ( ph -> G ~~> ( H ` A ) )

Proof

Step Hyp Ref Expression
1 climcn1lem.1
 |-  Z = ( ZZ>= ` M )
2 climcn1lem.2
 |-  ( ph -> F ~~> A )
3 climcn1lem.4
 |-  ( ph -> G e. W )
4 climcn1lem.5
 |-  ( ph -> M e. ZZ )
5 climcn1lem.6
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
6 climcn1lem.7
 |-  H : CC --> CC
7 climcn1lem.8
 |-  ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) )
8 climcn1lem.9
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( H ` ( F ` k ) ) )
9 climcl
 |-  ( F ~~> A -> A e. CC )
10 2 9 syl
 |-  ( ph -> A e. CC )
11 6 ffvelrni
 |-  ( z e. CC -> ( H ` z ) e. CC )
12 11 adantl
 |-  ( ( ph /\ z e. CC ) -> ( H ` z ) e. CC )
13 10 7 sylan
 |-  ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) )
14 1 4 10 12 2 3 13 5 8 climcn1
 |-  ( ph -> G ~~> ( H ` A ) )