| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climreclmpt.k |
|- F/ k ph |
| 2 |
|
climreclmpt.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climreclmpt.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
climreclmpt.a |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
| 5 |
|
climreclmpt.b |
|- ( ph -> ( k e. Z |-> A ) ~~> B ) |
| 6 |
|
nfmpt1 |
|- F/_ k ( k e. Z |-> A ) |
| 7 |
|
eqidd |
|- ( ph -> ( k e. Z |-> A ) = ( k e. Z |-> A ) ) |
| 8 |
7 4
|
fvmpt2d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> A ) ` k ) = A ) |
| 9 |
8 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> A ) ` k ) e. RR ) |
| 10 |
1 6 3 2 5 9
|
climreclf |
|- ( ph -> B e. RR ) |