Description: The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climreclmpt.k | |- F/ k ph |
|
climreclmpt.m | |- ( ph -> M e. ZZ ) |
||
climreclmpt.z | |- Z = ( ZZ>= ` M ) |
||
climreclmpt.a | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
||
climreclmpt.b | |- ( ph -> ( k e. Z |-> A ) ~~> B ) |
||
Assertion | climreclmpt | |- ( ph -> B e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climreclmpt.k | |- F/ k ph |
|
2 | climreclmpt.m | |- ( ph -> M e. ZZ ) |
|
3 | climreclmpt.z | |- Z = ( ZZ>= ` M ) |
|
4 | climreclmpt.a | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
|
5 | climreclmpt.b | |- ( ph -> ( k e. Z |-> A ) ~~> B ) |
|
6 | nfmpt1 | |- F/_ k ( k e. Z |-> A ) |
|
7 | eqidd | |- ( ph -> ( k e. Z |-> A ) = ( k e. Z |-> A ) ) |
|
8 | 7 4 | fvmpt2d | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> A ) ` k ) = A ) |
9 | 8 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> A ) ` k ) e. RR ) |
10 | 1 6 3 2 5 9 | climreclf | |- ( ph -> B e. RR ) |