Metamath Proof Explorer


Theorem climreclmpt

Description: The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climreclmpt.k 𝑘 𝜑
climreclmpt.m ( 𝜑𝑀 ∈ ℤ )
climreclmpt.z 𝑍 = ( ℤ𝑀 )
climreclmpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
climreclmpt.b ( 𝜑 → ( 𝑘𝑍𝐴 ) ⇝ 𝐵 )
Assertion climreclmpt ( 𝜑𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 climreclmpt.k 𝑘 𝜑
2 climreclmpt.m ( 𝜑𝑀 ∈ ℤ )
3 climreclmpt.z 𝑍 = ( ℤ𝑀 )
4 climreclmpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
5 climreclmpt.b ( 𝜑 → ( 𝑘𝑍𝐴 ) ⇝ 𝐵 )
6 nfmpt1 𝑘 ( 𝑘𝑍𝐴 )
7 eqidd ( 𝜑 → ( 𝑘𝑍𝐴 ) = ( 𝑘𝑍𝐴 ) )
8 7 4 fvmpt2d ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑘 ) = 𝐴 )
9 8 4 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑘 ) ∈ ℝ )
10 1 6 3 2 5 9 climreclf ( 𝜑𝐵 ∈ ℝ )