Description: The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climreclmpt.k | ⊢ Ⅎ 𝑘 𝜑 | |
climreclmpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
climreclmpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
climreclmpt.a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | ||
climreclmpt.b | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ⇝ 𝐵 ) | ||
Assertion | climreclmpt | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climreclmpt.k | ⊢ Ⅎ 𝑘 𝜑 | |
2 | climreclmpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | climreclmpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
4 | climreclmpt.a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | |
5 | climreclmpt.b | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ⇝ 𝐵 ) | |
6 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) | |
7 | eqidd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) | |
8 | 7 4 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 ) |
9 | 8 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
10 | 1 6 3 2 5 9 | climreclf | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |