Description: A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climxlim.m | |- ( ph -> M e. ZZ ) |
|
climxlim.z | |- Z = ( ZZ>= ` M ) |
||
climxlim.f | |- ( ph -> F : Z --> RR ) |
||
climxlim.c | |- ( ph -> F ~~> A ) |
||
Assertion | climxlim | |- ( ph -> F ~~>* A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climxlim.m | |- ( ph -> M e. ZZ ) |
|
2 | climxlim.z | |- Z = ( ZZ>= ` M ) |
|
3 | climxlim.f | |- ( ph -> F : Z --> RR ) |
|
4 | climxlim.c | |- ( ph -> F ~~> A ) |
|
5 | 3 | ffvelrnda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
6 | 2 1 4 5 | climrecl | |- ( ph -> A e. RR ) |
7 | 1 2 3 6 | xlimclim | |- ( ph -> ( F ~~>* A <-> F ~~> A ) ) |
8 | 4 7 | mpbird | |- ( ph -> F ~~>* A ) |