Metamath Proof Explorer


Theorem climxlim

Description: A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim.m
|- ( ph -> M e. ZZ )
climxlim.z
|- Z = ( ZZ>= ` M )
climxlim.f
|- ( ph -> F : Z --> RR )
climxlim.c
|- ( ph -> F ~~> A )
Assertion climxlim
|- ( ph -> F ~~>* A )

Proof

Step Hyp Ref Expression
1 climxlim.m
 |-  ( ph -> M e. ZZ )
2 climxlim.z
 |-  Z = ( ZZ>= ` M )
3 climxlim.f
 |-  ( ph -> F : Z --> RR )
4 climxlim.c
 |-  ( ph -> F ~~> A )
5 3 ffvelrnda
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
6 2 1 4 5 climrecl
 |-  ( ph -> A e. RR )
7 1 2 3 6 xlimclim
 |-  ( ph -> ( F ~~>* A <-> F ~~> A ) )
8 4 7 mpbird
 |-  ( ph -> F ~~>* A )