Description: A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climxlim.m | |- ( ph -> M e. ZZ ) |
|
| climxlim.z | |- Z = ( ZZ>= ` M ) |
||
| climxlim.f | |- ( ph -> F : Z --> RR ) |
||
| climxlim.c | |- ( ph -> F ~~> A ) |
||
| Assertion | climxlim | |- ( ph -> F ~~>* A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climxlim.m | |- ( ph -> M e. ZZ ) |
|
| 2 | climxlim.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | climxlim.f | |- ( ph -> F : Z --> RR ) |
|
| 4 | climxlim.c | |- ( ph -> F ~~> A ) |
|
| 5 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 6 | 2 1 4 5 | climrecl | |- ( ph -> A e. RR ) |
| 7 | 1 2 3 6 | xlimclim | |- ( ph -> ( F ~~>* A <-> F ~~> A ) ) |
| 8 | 4 7 | mpbird | |- ( ph -> F ~~>* A ) |