Step |
Hyp |
Ref |
Expression |
1 |
|
xlimclim.m |
|- ( ph -> M e. ZZ ) |
2 |
|
xlimclim.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
xlimclim.f |
|- ( ph -> F : Z --> RR ) |
4 |
|
xlimclim.a |
|- ( ph -> A e. RR ) |
5 |
|
df-xlim |
|- ~~>* = ( ~~>t ` ( ordTop ` <_ ) ) |
6 |
5
|
breqi |
|- ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A ) |
7 |
6
|
a1i |
|- ( ph -> ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A ) ) |
8 |
|
xrtgioo2 |
|- ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR ) |
9 |
|
reex |
|- RR e. _V |
10 |
9
|
a1i |
|- ( ph -> RR e. _V ) |
11 |
|
letop |
|- ( ordTop ` <_ ) e. Top |
12 |
11
|
a1i |
|- ( ph -> ( ordTop ` <_ ) e. Top ) |
13 |
8 2 10 12 4 1 3
|
lmss |
|- ( ph -> ( F ( ~~>t ` ( ordTop ` <_ ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
14 |
|
eqid |
|- ( ~~>t ` ( topGen ` ran (,) ) ) = ( ~~>t ` ( topGen ` ran (,) ) ) |
15 |
14 2 1 3
|
climreeq |
|- ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A <-> F ~~> A ) ) |
16 |
7 13 15
|
3bitrd |
|- ( ph -> ( F ~~>* A <-> F ~~> A ) ) |