Metamath Proof Explorer


Theorem xlimclim

Description: Given a sequence of reals, it converges to a real number A w.r.t. the standard topology on the reals, if and only if it converges to A w.r.t. to the standard topology on the extended reals (see climreeq ). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim.m φ M
xlimclim.z Z = M
xlimclim.f φ F : Z
xlimclim.a φ A
Assertion xlimclim φ F * A F A

Proof

Step Hyp Ref Expression
1 xlimclim.m φ M
2 xlimclim.z Z = M
3 xlimclim.f φ F : Z
4 xlimclim.a φ A
5 df-xlim * = t ordTop
6 5 breqi F * A F t ordTop A
7 6 a1i φ F * A F t ordTop A
8 xrtgioo2 topGen ran . = ordTop 𝑡
9 reex V
10 9 a1i φ V
11 letop ordTop Top
12 11 a1i φ ordTop Top
13 8 2 10 12 4 1 3 lmss φ F t ordTop A F t topGen ran . A
14 eqid t topGen ran . = t topGen ran .
15 14 2 1 3 climreeq φ F t topGen ran . A F A
16 7 13 15 3bitrd φ F * A F A