Metamath Proof Explorer


Theorem climreeq

Description: If F is a real function, then F converges to A with respect to the standard topology on the reals if and only if it converges to A with respect to the standard topology on complex numbers. In the theorem, R is defined to be convergence w.r.t. the standard topology on the reals and then F R A represents the statement " F converges to A , with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that A is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017)

Ref Expression
Hypotheses climreeq.1 R = t topGen ran .
climreeq.2 Z = M
climreeq.3 φ M
climreeq.4 φ F : Z
Assertion climreeq φ F R A F A

Proof

Step Hyp Ref Expression
1 climreeq.1 R = t topGen ran .
2 climreeq.2 Z = M
3 climreeq.3 φ M
4 climreeq.4 φ F : Z
5 1 breqi F R A F t topGen ran . A
6 ax-resscn
7 6 a1i φ
8 4 7 fssd φ F : Z
9 eqid TopOpen fld = TopOpen fld
10 9 2 lmclimf M F : Z F t TopOpen fld A F A
11 3 8 10 syl2anc φ F t TopOpen fld A F A
12 9 tgioo2 topGen ran . = TopOpen fld 𝑡
13 reex V
14 13 a1i φ A V
15 9 cnfldtop TopOpen fld Top
16 15 a1i φ A TopOpen fld Top
17 simpr φ A A
18 3 adantr φ A M
19 4 adantr φ A F : Z
20 12 2 14 16 17 18 19 lmss φ A F t TopOpen fld A F t topGen ran . A
21 20 pm5.32da φ A F t TopOpen fld A A F t topGen ran . A
22 simpr A F t TopOpen fld A F t TopOpen fld A
23 3 adantr φ F t TopOpen fld A M
24 11 biimpa φ F t TopOpen fld A F A
25 4 ffvelrnda φ n Z F n
26 25 adantlr φ F t TopOpen fld A n Z F n
27 2 23 24 26 climrecl φ F t TopOpen fld A A
28 27 ex φ F t TopOpen fld A A
29 28 ancrd φ F t TopOpen fld A A F t TopOpen fld A
30 22 29 impbid2 φ A F t TopOpen fld A F t TopOpen fld A
31 simpr A F t topGen ran . A F t topGen ran . A
32 retopon topGen ran . TopOn
33 32 a1i φ F t topGen ran . A topGen ran . TopOn
34 simpr φ F t topGen ran . A F t topGen ran . A
35 lmcl topGen ran . TopOn F t topGen ran . A A
36 33 34 35 syl2anc φ F t topGen ran . A A
37 36 ex φ F t topGen ran . A A
38 37 ancrd φ F t topGen ran . A A F t topGen ran . A
39 31 38 impbid2 φ A F t topGen ran . A F t topGen ran . A
40 21 30 39 3bitr3d φ F t TopOpen fld A F t topGen ran . A
41 11 40 bitr3d φ F A F t topGen ran . A
42 5 41 bitr4id φ F R A F A