| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climreeq.1 |
|- R = ( ~~>t ` ( topGen ` ran (,) ) ) |
| 2 |
|
climreeq.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
climreeq.3 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
climreeq.4 |
|- ( ph -> F : Z --> RR ) |
| 5 |
1
|
breqi |
|- ( F R A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) |
| 6 |
|
ax-resscn |
|- RR C_ CC |
| 7 |
6
|
a1i |
|- ( ph -> RR C_ CC ) |
| 8 |
4 7
|
fssd |
|- ( ph -> F : Z --> CC ) |
| 9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 10 |
9 2
|
lmclimf |
|- ( ( M e. ZZ /\ F : Z --> CC ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) ) |
| 11 |
3 8 10
|
syl2anc |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ~~> A ) ) |
| 12 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 13 |
|
reex |
|- RR e. _V |
| 14 |
13
|
a1i |
|- ( ( ph /\ A e. RR ) -> RR e. _V ) |
| 15 |
9
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 16 |
15
|
a1i |
|- ( ( ph /\ A e. RR ) -> ( TopOpen ` CCfld ) e. Top ) |
| 17 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
| 18 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> M e. ZZ ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ A e. RR ) -> F : Z --> RR ) |
| 20 |
12 2 14 16 17 18 19
|
lmss |
|- ( ( ph /\ A e. RR ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
| 21 |
20
|
pm5.32da |
|- ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) ) |
| 22 |
|
simpr |
|- ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) |
| 23 |
3
|
adantr |
|- ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> M e. ZZ ) |
| 24 |
11
|
biimpa |
|- ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> F ~~> A ) |
| 25 |
4
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. RR ) |
| 26 |
25
|
adantlr |
|- ( ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) /\ n e. Z ) -> ( F ` n ) e. RR ) |
| 27 |
2 23 24 26
|
climrecl |
|- ( ( ph /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) -> A e. RR ) |
| 28 |
27
|
ex |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> A e. RR ) ) |
| 29 |
28
|
ancrd |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A -> ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) ) |
| 30 |
22 29
|
impbid2 |
|- ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) <-> F ( ~~>t ` ( TopOpen ` CCfld ) ) A ) ) |
| 31 |
|
simpr |
|- ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) |
| 32 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 33 |
32
|
a1i |
|- ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
| 34 |
|
simpr |
|- ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) |
| 35 |
|
lmcl |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR ) |
| 36 |
33 34 35
|
syl2anc |
|- ( ( ph /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) -> A e. RR ) |
| 37 |
36
|
ex |
|- ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> A e. RR ) ) |
| 38 |
37
|
ancrd |
|- ( ph -> ( F ( ~~>t ` ( topGen ` ran (,) ) ) A -> ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) ) |
| 39 |
31 38
|
impbid2 |
|- ( ph -> ( ( A e. RR /\ F ( ~~>t ` ( topGen ` ran (,) ) ) A ) <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
| 40 |
21 30 39
|
3bitr3d |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
| 41 |
11 40
|
bitr3d |
|- ( ph -> ( F ~~> A <-> F ( ~~>t ` ( topGen ` ran (,) ) ) A ) ) |
| 42 |
5 41
|
bitr4id |
|- ( ph -> ( F R A <-> F ~~> A ) ) |