Metamath Proof Explorer


Theorem xlimconst

Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst.p k φ
xlimconst.k _ k F
xlimconst.m φ M
xlimconst.z Z = M
xlimconst.f φ F Fn Z
xlimconst.a φ A *
xlimconst.e φ k Z F k = A
Assertion xlimconst φ F * A

Proof

Step Hyp Ref Expression
1 xlimconst.p k φ
2 xlimconst.k _ k F
3 xlimconst.m φ M
4 xlimconst.z Z = M
5 xlimconst.f φ F Fn Z
6 xlimconst.a φ A *
7 xlimconst.e φ k Z F k = A
8 1 2 5 6 7 fconst7 φ F = Z × A
9 letopon ordTop TopOn *
10 4 lmconst ordTop TopOn * A * M Z × A t ordTop A
11 9 6 3 10 mp3an2i φ Z × A t ordTop A
12 8 11 eqbrtrd φ F t ordTop A
13 df-xlim * = t ordTop
14 13 breqi F * A F t ordTop A
15 12 14 sylibr φ F * A