Metamath Proof Explorer


Theorem xlimconst

Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst.p 𝑘 𝜑
xlimconst.k 𝑘 𝐹
xlimconst.m ( 𝜑𝑀 ∈ ℤ )
xlimconst.z 𝑍 = ( ℤ𝑀 )
xlimconst.f ( 𝜑𝐹 Fn 𝑍 )
xlimconst.a ( 𝜑𝐴 ∈ ℝ* )
xlimconst.e ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
Assertion xlimconst ( 𝜑𝐹 ~~>* 𝐴 )

Proof

Step Hyp Ref Expression
1 xlimconst.p 𝑘 𝜑
2 xlimconst.k 𝑘 𝐹
3 xlimconst.m ( 𝜑𝑀 ∈ ℤ )
4 xlimconst.z 𝑍 = ( ℤ𝑀 )
5 xlimconst.f ( 𝜑𝐹 Fn 𝑍 )
6 xlimconst.a ( 𝜑𝐴 ∈ ℝ* )
7 xlimconst.e ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
8 1 2 5 6 7 fconst7 ( 𝜑𝐹 = ( 𝑍 × { 𝐴 } ) )
9 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
10 4 lmconst ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ 𝐴 ∈ ℝ*𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
11 9 6 3 10 mp3an2i ( 𝜑 → ( 𝑍 × { 𝐴 } ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
12 8 11 eqbrtrd ( 𝜑𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
13 df-xlim ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
14 13 breqi ( 𝐹 ~~>* 𝐴𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
15 12 14 sylibr ( 𝜑𝐹 ~~>* 𝐴 )