| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xlimconst.p |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
xlimconst.k |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
xlimconst.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
xlimconst.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
xlimconst.f |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 6 |
|
xlimconst.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 7 |
|
xlimconst.e |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 8 |
1 2 5 6 7
|
fconst7 |
⊢ ( 𝜑 → 𝐹 = ( 𝑍 × { 𝐴 } ) ) |
| 9 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
| 10 |
4
|
lmconst |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ 𝐴 ∈ ℝ* ∧ 𝑀 ∈ ℤ ) → ( 𝑍 × { 𝐴 } ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) |
| 11 |
9 6 3 10
|
mp3an2i |
⊢ ( 𝜑 → ( 𝑍 × { 𝐴 } ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) |
| 12 |
8 11
|
eqbrtrd |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) |
| 13 |
|
df-xlim |
⊢ ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) |
| 14 |
13
|
breqi |
⊢ ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) |
| 15 |
12 14
|
sylibr |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |