| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimconst.p | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | xlimconst.k | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | xlimconst.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | xlimconst.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | xlimconst.f | ⊢ ( 𝜑  →  𝐹  Fn  𝑍 ) | 
						
							| 6 |  | xlimconst.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 7 |  | xlimconst.e | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 8 | 1 2 5 6 7 | fconst7 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑍  ×  { 𝐴 } ) ) | 
						
							| 9 |  | letopon | ⊢ ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* ) | 
						
							| 10 | 4 | lmconst | ⊢ ( ( ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* )  ∧  𝐴  ∈  ℝ*  ∧  𝑀  ∈  ℤ )  →  ( 𝑍  ×  { 𝐴 } ) ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝐴 ) | 
						
							| 11 | 9 6 3 10 | mp3an2i | ⊢ ( 𝜑  →  ( 𝑍  ×  { 𝐴 } ) ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝐴 ) | 
						
							| 12 | 8 11 | eqbrtrd | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝐴 ) | 
						
							| 13 |  | df-xlim | ⊢ ~~>*  =  ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) | 
						
							| 14 | 13 | breqi | ⊢ ( 𝐹 ~~>* 𝐴  ↔  𝐹 ( ⇝𝑡 ‘ ( ordTop ‘  ≤  ) ) 𝐴 ) | 
						
							| 15 | 12 14 | sylibr | ⊢ ( 𝜑  →  𝐹 ~~>* 𝐴 ) |