Metamath Proof Explorer


Theorem climxlim

Description: A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim.m ( 𝜑𝑀 ∈ ℤ )
climxlim.z 𝑍 = ( ℤ𝑀 )
climxlim.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
climxlim.c ( 𝜑𝐹𝐴 )
Assertion climxlim ( 𝜑𝐹 ~~>* 𝐴 )

Proof

Step Hyp Ref Expression
1 climxlim.m ( 𝜑𝑀 ∈ ℤ )
2 climxlim.z 𝑍 = ( ℤ𝑀 )
3 climxlim.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
4 climxlim.c ( 𝜑𝐹𝐴 )
5 3 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
6 2 1 4 5 climrecl ( 𝜑𝐴 ∈ ℝ )
7 1 2 3 6 xlimclim ( 𝜑 → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
8 4 7 mpbird ( 𝜑𝐹 ~~>* 𝐴 )