Metamath Proof Explorer
Description: A converging sequence in the reals is a converging sequence in the
extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
climxlim.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
climxlim.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
|
climxlim.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
|
|
climxlim.c |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
|
Assertion |
climxlim |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
climxlim.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climxlim.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climxlim.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
climxlim.c |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
5 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
6 |
2 1 4 5
|
climrecl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
7 |
1 2 3 6
|
xlimclim |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
8 |
4 7
|
mpbird |
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 ) |